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P a r t  I. 

ON THE RESONANCE CONCEPT I N  SYSTEPIS  OF LINEAR AND 
NONLINEAR ORDINARY DIFFERENTIAL  EQUATIONS 

Rahmi  Ibrahim  Ibrahim  Abdel Karim 

Theorems  on the  resonance  cases   for   l inear   and  nonl inear  

ord inary   d i f fe ren t ia l   equa t ions   o f   the  first t o   t h e  nth 

order  are derived  and  proved i n   d e t a i l ,   u s i n g  an earlier 

repor t  by t h e  same author  as p a r t i a l   b a s i s .  M i n i m a l  

orders   of   magni tude  of   the  solut ions  and  their   der ivat ives  

are  given  and methods for   the   format ion  of examples,  with 

sample c a l c u l a t i o n s   i n  matrix notat ion,  are described. 
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PART I 

THE RESONANCE CONCEPT I N  SYSTElMS OF n LINEAR ORDINARY 
DIFFERElJTIAL aUATIONS OF THE FIRST ORDER 

Section 1. Problem  Formulation,  Principal  Results 
.. . "" ~ ." " . ~ "- - . .  . ~. 

R.Ig1isch  invest igated  the  resonance  concept   in   l inear   ordinary  differen-  

tial equations  of  the  second  order  (Bibl.5).  These  considerations w i l l  be ex- 

tended  here  to  systems of  n o rd ina ry   l i nea r   d i f f e ren t i a l   equa t ions  of t h e  first 

order  which w i l l  be  writ ten i n  matrix form with x(  t ) as the  sought  vector:  

where t h e   s q u a r e   ( f o r  example, r e a l )  matrix H(t  ) i s  t o  be  continuous  in t and 

per iodic   wi th   the   per iod  P, i.e., a l l  n" elements a i k  ( t  ) are continuous  functions 

i n  t ,  per iodic   with P;  t h e   ( f o r  example, also r e a l )   v e c t o r   f ( t )  is  assumed as 

also being  continuous  and  periodic  with P: 

The  homogeneous system con j u g a t e   t o  eq. (1) reads 

:; = ( 4  9 

df i  = - % T ( t ) & ,  

while  the  ,,adjoint1*  system i s  

d l  

where the   supe r sc r ip t  T i s  to   denote  t h e  t r a n s i t i o n   t o   t h e   t r a n s p o s e d  matrix. 

Defini t ion 1. I n   t h e  inhomogeneous different ia l   equat ion  system (l), t h e  

resonance  case i s  p resen t   i f   t he   ad jo in t   sys t em (4 )  has a t  least one  solution 

vec tor  a ( t  ) periodic   with P, f o r  which 

/a f ( t ) f (4dt=C*0 
P 

( 5 )  
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i s  valid.  

In   Sect ion 4 ,  we will prove: 

Theorem 1. In  the  resonance  case,   any  solut ion  vector   r ( t )   of   eq.( l )  

assumes a rb i t ra r i ly   l a rge   va lues ,   increas ing   wi thout  bounds w i t h  increas ing  t. 

Definit ion 2. In   eq.( l ) ,  we have the   p r inc ipa l   ca se  i f  eq.(,!+)  has no 4 
solut ion  vector  9 (  t ) periodic  w i t h  Po 

In   Sect ion 5, we w i l l  prove: 

Theorem 2. In   t he   p r inc ipa l   ca se ,   so lu t ions   F ( t )   o f  'eq. (l), remaining 

r e s t r i c t e d   f o r  a l l  t, a r e  i n  ex i s t ence ,   fo r  example, the   un ique ly   ex is t ing  

solut ion  per iodic  w i t h  P. 

Definit ion 3. Equation (1) represents   the  except ional   case if eq.(4)  does 

have solut ion  vectors  3 (t)  periodic  with P but if t h e  fol lowing  re la t ion  appl ies  

t o  a l l  these   so lu t ions   per iodic  w i t h  P: 

J f ( t ) f ( t ) d t = O .  
P 

0 

In   Sec t ion  6, we will prove: 

Theorem 3. Even i n   t h e   e x c e p t i o n a l   c a s e ,   r e s t r i c t e d   s o l u t i o n s   g ( t )  of 

eq . ( l )   ex i s t   fo r  a l l  values of  t ,  f o r  example, solut ions  per iodic   with P but no 

longer  uniquely  defined. 

Sections 2 and 3 contain auxiliary considerations on the  inhomogeneous 

system (l), s p e c i f i c a l l y  on the   co r re l a t ion  between t h e  homogeneous system (3)  

and the   ad jo in t   sys tem  (4) .   In   th i s   case ,  t h e  p e r i o d i c i t y   s t i p u l a t i o n  ( 2 )  w i l l  

be  introduced  only in   Sec t ion  3. 

Kany of t h e   r e s u l t s   a r e   a l r e a d y  known, but  they  are  here  derived  in a 

manner tha t   r equ i r e s  no special ized knowledge. 
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Section 2. Auxiliary Cg@derations on S_yst-ems of   L inear   Di f fe ren t ia l  
” h u a t i o n s  - . .  of  t-he  First   Order 

I n   t h i s   S e c t i o n ,   t h e   p e r i o d i c i t y   s t i p u l a t i o n  (2 )  w i l l  not  be  used. 

Let h l  ( t  ), . . . , hn (t ) be a linear  independent  solution  system  (fundamental  

system)  of eq. (3 ) a t  the   po in t  , which  can be combined i n t o   t h e   s o l u t i o n  

We then  have 

Det 9 (t,) + 0.  

Theorem 4. From eq.(8) it fo l lows   tha t  

f o r  a l l  values of t. 

Proof. If the  conjugates  [subdeterminants w i t h  co r rec t   s ign  (-1) ] f o r  I +  v 

t h e  element y i v ( t )   i n   e q s . ( 7 )   o r  (9)  are   denoted by Y i v ( t )  and p u t t i n g  

the   fo l lowing   resu l t  w i l l  be  obtained,  taking  eq.(3)  into  consideration and 

d e n o t i n g   t h e   d i f f e r e n t i a t i o n   t o  t by a prime: 

From t h i s ,  theorem 4 fol lows  direct ly .  

Theorem 5. I n  a d d i t i o n   t o  eq. ( 7 ) ,  the  expression 

a t  an   a rb i t ra ry   cons tan t  matrix Q with a determinant C d i f f e r i n g  from zero,  

represents  a fundamental  system  of  solutions of eq.(3). 
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Proof.  Equations (7) and (3) ,  toge ther   wi th  

Y=(I);,I);*....kl:) 
can  be combined i n t o  

3 = N(t) 9. 
d l  

From t h i s ,  we can ca l cu la t e  

(2,Q)'=?)'Q=N!g)Q=N(g)Q). 

This means t h a t  each i s  a so lu t ion  system of eq. (3 ). 

That we a l s o  have d e t ( m )  f 0, follows  from 

det('DQ)=Y-C+o. 

Theorem 60 The vectors  

which  can  be  combined i n t o   t h e  matrix 

8 ~ )  = (m. Y,i(t)) 
1 

form a fundamental system of so lu t ions   o f  eq.(4). 

Proof.  Equation (15) i n d i c a t e s   d i r e c t l y  t h a t  

i.e., t h a t  it i s  t h e   u n i t  matrix. On in t roducing   the   rec iproca l  matrix p-', w e  

can then a l s o  v r i t e  
Llr= 9-1, 8 = (g-y. 

From eqs . (   16)   o r  (17) it fo l lows  d i r e c t l y   t h a t  

The s ta tement   that  3 i s  the   so lu t ion  matrix of eq.(,!+) i s  derived as follows: 

According to   eq.(16) ,  we have 

8 



i.e., with  eq.(l3) 

which coincides  with  eq.(4). 

Thus,  theorems 5 and 6 y i e l d   d i r e c t l y :  

'Theorem 7. A general  fundamental  system  of  solutions  of  eq.(4) i s  repre- 

sented by t h e  matrix 
8'=a.Q=(9)-l)r.Q 

a t  a rb i t r a ry   cons t an t  matrix Q with a determinant C d i f f e r i n g  from  zero. 

Denoting 

and 

the   fo l lowing  is  v a l i d   f o r  two a r b i t r a r y   v e c t o r s  h( t)  and a (  t ): 

and 

Therefore,   the  (expanded)  Lagrange  identity 

i s  v a l i d   f o r   t h e   s o l u t i o n   v e c t o r s  b and 3 of  eqs.(3)  and  (4),  respectively. 

Analogously,  the  following i s  va l id   fo r   t he   so lu t ion   vec to r s   o f   eqs . ( l )  

and (4): 

Section 3. S y s t e g  o f  Linear   Di f fe reTt ia lEquat ions   wi th  
Per iodic   Coef f ic ien ts  
" " .  

I n  this Sec t ion ,   t he   pe r iod ic i ty   s t i pu la t ion   (2 )  is essen t i a l .  

Theorem 80 The homogeneous systems (3 )  and (4)   have   the  same number Or" P 
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Linearly  independent  solutions  periodic  with P (0  P n). 

Proof*. Let P be   t he  number of   l inear ly   independent   so lu t ions  of eq. (3), 

periodia.  with P. It i s  merely necessary   to   demonst ra te   tha t  eq.(f+) has   exact ly  

p l inear ly   independent   so lu t ions   tha t  are per iodic   wi th  P, s ince  the  conclusion 

can  be  reversed  in view  of t h e   f a c t   t h a t   e q . ( 3 )  i s  t h e   a d j o i n t  system t o  eq.(4). 

Case 1. Let P = n. Here, t h e   e n t i r e  matrix pft) i s  per iodic   wi th  P so  

t h a t   a l s o   t h e  matrix 3 ( t )   a c c o r d i n g   t o  eq.(15) w i l l  be per iodic .  

Case 2. Let 0 < P C n. Assume t h a t   t h e  hv ( t  ), with v = 1, 2, . . . , P ,  /11 
are per iodic   with P. Then, the   fo l lowing  i s  valid f o r  any   a rb i t r a ry   po in t  tl : 

If the  equal   s ign were p r e s e n t   i n  eq.( 26) ,   the   per iodic i ty   o f  this h ( t  ) with 

the   per iod  P would follow  from eq. (3)   with  considerat ion  of   eq.(2) .   In   the 

following, l e t  tl be an a rb i t r a r i l y   s e l ec t ed   bu t   t hen   r e t a ined   po in t .   I n t eg ra -  

t ion  of   the first equation in t h e  system (24) over tl and tl + P w i l l  yield, 

f o r  each k = 1, 2, ..., n, 
J ~ ( ~ ) J ; + ' ~ ) , ( I J = O  for v = 1 , 2  ,__., e .  (27) 

These are n l i n e a r  homogeneous equations  which have a t  least t h e  p l inear ly  in- 

dependent  solutions.  hv(tl ) f o r  V = 1, 2,  .. ., P o  It will be  demonstrated  that 

no fu r the r   so lu t ion   vec to r  u1, l inear ly   independent  of this, can exis t .  Con- 

versely,  l e t  us assume t h a t ,   f o r   s u c h  a u1, the   fo l lowing  i s  also va l id  
a 

3:(t)1::+pu1 = 0 (28) 

Then, l e t  us  define a v e c t o r   u ( t )  from  eq.(3): 

d u  
d l  = zl ( t )  u with U(fl)  = ul. 

3: By R.Iglisch. 
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For this vec tor  u ( t ) ,  t h e  first equat ion  of   the system (2,!+), by in tegra t ion  

over tl and tl + P f o r  k = 1, 2, . . ., n, w i l l  y i e l d  

a:(4 + P) 11 ( 4  + P )  - a:(fl) u (4) = 0 

and, af ter  subtraction  of  eq.(28), 

a:u, + P )  [ u ( 4  + P) - u(f,)] =o.  

This  represents a l i n e a r  homogeneous system of  equations  with a determinant 

d i f f e r i n g  from  zero;  consequently, 

U ( 4 + P ) = U ( 4 )  

must be  valid  from  which,  because of eqs.(29)  and  (2),   the  periodicity of U ( t )  

with P i s  obtained.  Consequently,  because  of  eq.(26), u1 = u ( t 1 )  i s  l i n e a r l y  

dependent  on h l ( t l ) ,  ..., h , ( t l ) .  

Thus, we  know that  the  system  of  equations  (27) has exact ly  P l i nea r ly   i n -  

dependent  solutions.   Therefore,   the matrix 

has t h e  rank n - P. By suitable  numeration, i t  becomes poss ib l e  that exact ly  

7 j l ( t ) ! t1+p ,  . e . ,  3n-p(t) l ; '+P  are   l inear ly   independent .  The remaining  of  these 
t l  1 

vec tors  can  be l inear ly   expressed  by these  vectors :  

Corisider now the   vec to r s  

i t  fo l lows   t ha t   t he  n vectors  (31) are l inear ly   independent   solut ions  of  eq.(,!+) 

f o r  a l l  t (see  a lso  theorem 4) .  The 2 ' t v ( t )   wi th  v = 1, 2, . . . , n - p ,  because 

11 



of the  l inear   independence  of   the  vectors  

f(42+* 

inc luding   the i r   l inea l .   combina t ions ,   a re   no t   per iodic   wi th  P. Conversely,  the 

W f (  t ) with p = n - P + 1, . . . , n have  'exactly  - the'   period P, *as-readily seen 

from eqs.(30), (4),  and (2). T h i s  y i e lds   t he   p roo f   fo r  our case 2. 
I 

Case 2. Let p = 0. If eq.(4)  had a solut ion  per iodic   with P,  also  eq.(3) 

would  have such a solution  according  to  the  above  statements.  

Section 4. The Resonance Case 

Pruof f o r  Theorem 1. Thus, l e t  8 ( t )  be a solut ion  vector   of   eq.(4)   per i -  

odic  with P, f o r  which eq.( 5)  i s  va l id .  

I n   c o n t r a s t   t o   t h e  argument, we make the  assumption: 

I E ( t ) l  d E  (32) 

f o r  a l l  t and f o r  an a r b i t r a r i l y   s e l e c t e d   s o l u t i o n   g ( t )   o f   e q . ( l ) .  An in tegra-  

t i on   o f   t he  first equat ion   in  t h e  system (25) between t and t + mP, with  arbi-  

trary positive-whole m and  taking eq.( 5 )  into  considerat ion,  w i l l  y i e l d  

Because  of t he   pe r iod ic i ty   o f  8' ( t ) ,  a r e s t r i c t i o n  of the   fol lowing form e x i s t s  

On the   bas i s   o f  this and  from eq. (33 ), an est imate  

i s  obtained. A t  s u f f i c i e n t l y   l a r g e  m, this furn ishes  a contradiction  to  eq.(32).  

The result can also  be  formulated as follows: 

Theorem 9 .  In   the  resonance  case,   for   each  solut ion  vector   g( t )  of  eq.( l )  

12  



and for each   in te rva l  

vanishes  with C from eq.( 5)  and D from eq.(34). 

Section 5. .. The P r inc ipa l  Case 

I n  this Section, it i s  assumed that eq.(f+) has  no  solution a ( t )   p e r i o d i c  

with P. F i r s t ,  w e  w i l l  prove: 

Theorem 10. If 31 ( t  ), . . . , 8 ( t  ) are l inear ly   independent   solut ions  of  /13 
eq.(l+), we have 

Proof. If, f o r  a spec ia l  quantity t = t2, w e  would  have D( ta ) = 0 in 

c o n t r a s t   t o   t h e  argument,  then n  numbers  CY^, cuz , . . . , Wn with + . . . + a: > 0 

could  be so  determined t h a t  

Pu t t ing  

we would  have 

However, according  to   eqs . (4)  and (2), it would fo l low  tha t  

ao(t + P )  =ao(4  

f o r  a l l  t, in   cont rad ic t ion   to   the   assumpt ion .  

Proof of Theorem 2. If g ( t )  were a so lu t ion   of   eq . ( l )   per iodic   wi th  P,  an 

in t eg ra t ion  of t h e  first equat ion   in   the  system (25) between a f ixed   po in t  t3 

and + P would y i e l d  



I.+ P 

r. 
a ~ ( t ) l : : + P ~ ( t 3 ) = I a . T ( 1 ) f ( t ) d t  for v = 1 , 2 ,  ..., n. (38) 

Since   the   coef f ic ien t   de te rminant   o f   th i s  system of  equations,  according t o  

theorem 10, differs f r o m  zero, t h e   q u a n t i t y  F(h ) can be uniquely .determined 

from  this.  Let us assume t h a t  eq.(l), w i t h   t h e s e   i n i t i a l  values a t  t h e   p o i n t  t3 

i s  so lved ,   thus   y ie ld ing  a so lu t ion   vec to r   F ( t ) .  It only  remains t o  be proved 

t h a t   t h i s   F ( t  ) i s  pe r iod ic   w i th  P. I n  view of eq.( 2), it will then  merely be 

necessary  to   determine  that ,   automatical ly ,  

€ ( 5 + p ) = € ( 5 )  ( 3 9 )  

An in t eg ra t ion  of t h e  first equation of  t h e  system (25) over  ta  and t a  + P w i l l  

y i e l d ,   f o r  v = 1, 2,  . .. , n, 

i+f(43+P).E(4+P) -a:(~3).E(b)=.f6f(4 
:,+ P 
*. 

On deduct ing   eq . (38)   f rom  th i s ,   the   l inear  system of ' equations w i l l  read 

with a determinant   differ ing from zero,   analogous  to 

vanishing  of  the  bracket  and  thus of eq. ( 3 9 ) .  

Section 6. The Ikcep t iona l   case^ 

eq. (8) .  This   l eads   t o  

/Ik 

per iodic   wi th  P, for which 

i s  valid,   then  the  determinant (37) w i l l  exactly  have  the  rank n - p .  Of t h e  

system of equations (38), t h e  f irst  o equat ions   ( for  V = 1, 2,  . . , P ) are 

au to re t i ca l ly   s a t i s f i ed   s ince   t hey   con ta in   on ly   ze ros .  From the  remaining 



equations (38)  with v = P + 1, . . . , n, a t o t a l  o f  P l inear ly   independent   vectors  

can be determined,  supplemented  by the   co r re spond ing   i n i t i a l  values ( l b 2 )  by 

solving eq. (1) : 
(43 1 

That, for each of t h e s e   g z ( t )  (P = 1, 2, ..., o), 

i s  automatically  obtained follows from t h e  system of equations which i s  derived 

with a determinant   differ ing f r o m  zero.  This means t h a t  a l l  t hese  F:(t) w i l l  

have the   pe r iod  P. Thus, w e  can make the  following  statement:  

Theorem 11. If eq.(,!+) has  exactly P l inear ly   independent   solut ions  per i -  

odic   with P ,  for   each of which eq.( 6 )  i s  val id ,   then  eq.( l )   has  a P-parametric 

family of so lu t ions   per iodic   wi th  P. 

This result agrees   wi th   the  trivial f a c t   t h a t  a l l  solut ion  vectors   of  

eq . ( l )   per iodic   wi th  P are  obtained by adding t o  one of  these   vec tors  all solu- 

t i on   vec to r s  of eq.(3)   per iodic   with P. 
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PART I1 

THE RESONANCE CASE I N  SYSTEMS  OF n NONLINEAR ORDINARY 
DIFFERElJTIAL aUATIONS OF THE FIRST ORDER 

Section 1. Problem  Formulation.  Princi-oal  Results 

As an extension  of   invest igat ions made by R.1glisch  (Bibl.l),  we consider 

here   the   nonl inear   d i f fe ren t ia l   equa t ion   sys tem 

which,  under  introduction  of  the  vectors 

can be   wr i t t en   i n   t he   fo l lowing  form: 

be   va l id .   For   the   func t ions   g l ,   in  v i e w  of t h e   v a r i a b l e  uf , l e t  an e p a n s i o n  

in   Tay lo r   s e r i e s  up t o  terms of  the  second  order  be  possible,  and l e t   o ( t ) ,  f o r  

example,  be  continuous. 

Assume that a so lu t ion  ~ ( t )  of  eq.(3)  periodic  with P i s  known: 

I 



at  s u f f i c i e n t l y  small IS 1 ; here  again, we assume 

f (1 + P) = f (4 

Using 

eq. (6 )  w i l l  be  transformed, after subt rac t ion  of eq.( 5),  i n t o  

O f  these,   the   solut ions  with small 1 dt) I a t  !e 1 w i l l  be  investigated.  

As w i l l  be  demonstrated i n   S e c t i o n  2 where a transformation of eq.(9) i s  

t o  be made, th'e r o l e  of  t h e  homogeneous l i n e a r  system o f  equations'" i s  taken 

over by the  system 

d o  = x ( t )  t) ( t )  dt  

w i t h  t h e  matrix ( i ,  k = 1, 2, ..., n):  

Obviously, 
(1 + P) " 9I (0 

The homogeneous system,  adjoint  to  eq.(lO),  w i l l  then  read as follows if 

the   t r ans i t i on   t o   t he   t r ansposed  matrix i s  denoted by the   superscr ip t  T: 

Ul 
dJ = - % T ( 1 )  (1 )  

Theorem 1 (Resonance  case). If eq.(l3) has  a so lu t ion   vec tor  x (  t ) periodic  

with P ,  for which 

i s  obtained,   each  solut ion  F( t )  o f  eq. ( 9 )  - independent of t h e   i n i t i a l   v a l u e s  - 

w i l l  assume values  with  increasing t whose absolute  amounts a r e  a t  l e a s t  of t he  

order  of  magnitude of Q IS I The proof i s  given in   Sec t ion  3. 
I 

-x- See also  another   report  by the  sane  author  (Bibl.2). 
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Then, we obtain t h e  following i n  Section 4: 

Theorem 2 (Principal   case) .  If eq.(13) has no so lu t ion   vec tor  3 (t)  peri-  

odic   with P, then  eq.(9) w i l l  have   so lu t ion   vec to r s   g ( t )   fo r   each   su f f i c i en t ly  

small B which, f o r  all values  of t, r e t a i n   t h e   o r d e r  of magnitude l e / ,  i.e., 

is v a l i d   f o r  a l l  t, f o r  example, t h e  uniquely  exis t ing small so lu t ion   per iodic  

T h i s  on ly   l eaves   the   except iona l   case  t o  be  defined which s t a t e s  t h a t  

eq.(l3) w i l l  have   so lu t ion   vec tors   2 l ( t ) ,  ..., q r ( t )   p e r i o d i c  w i t h  P a t  1 s' 

r n bu t   t ha t ,  f o r  a l l  these  per iodic   solut ions,   the   fol lowing  expression i s  

v a l i d  : 

I n  this case, it i s  impossible   to  rrlake general   statements on the   func t ions  

gi (U, t )  without  further  assumptions. 

Section 2. A Transformation 

Pu t t ing  

w i l l  y i e l d  

When apply ing   the   Taylor   se r ies   wi th   respec t   to  A t o  t h e  d i f fe rence  on t h e  

right-hand  side of t h e  ith component equation o f  the  system ( 9 ) ,  we obta in  

0 

o r ,  i f   ( t )   a r e   t h e  components of t h e   v e c t o r   F ( t ) ,  
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I n   a d d i t i o n   t o   t h e  matrix %(t) from eq.(ll), we next  introduce  the  %ensortr  

T(u(t ,  X ) ,  t )  whose  n  components are to   r ep resen t   t he   ma t r i ces  (k, 4 = 1, .., 
n )  : 

Of these ,  a t  s u f f i c i e n t l y  small 6 and BO, so lu t ions  w i l l  be sought w i t h  

It should  be  noted  here   that   the   tensor  

From this f a c t ,   i n  combination  with  the first re la t ion   (23) ,   the   ex is tence  /20 

of a f i n i t e   c o n s t a n t  M fo l lows   in   such  a manner t h a t ,   f o r   t h e   i n t e g r a l   i n  

For this, it merely must  be  assumed t h a t  a l l  second  derivatives on the   r i gh t -  

hand s ide  in   eq.(20) ,   wi thin an i n t e r v a l   o f  tl 5 t s tl + P, a r e   r e s t r i c t e d   f o r  

a l l  va lues   l u ( t ,  A )  - u o ( t ) l  6 of t h e  first argument. 
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Section 3. The Resonance  Case 

Let   the  adjoint   system (13) have a so lu t ion   vec to r   3 ( t )   pe r iod ic   w i th  P, 

f o r  which eq.( l4)  i s  va l id .   In   cont ras t  t o  t h e  argument  of  theorem 1, w e  are 

making the  following  assumption: 

f o r  a n   a r b i t r a r y   s o l u t i o n   g ( t )  which satisfies t h e  first s t ipu la t ion   (23 )   fo r  

a l l  t with a f i n i t e   c o n s t a n t  N,  t o  be  determined  later.  Analogous t o  eq.(33) 

in  another  paper  (Bibl.2),   eqs.(22)  and (13), f o r  an  arbitrary  posit ive-whole n 

with C,  will y i e l d  on t h e   b a s i s  of eq.(l4): 

Because  of t h e   p e r i o d i c i t y   o f   9 ' ( t ) ,  a constraint   of   the   fol lowing  form  appl ies  

If eqs. ( 2 8 ) ,  ( 2 6 ) ,  and (25) are   used,  an es t imate   accord ing   to  eq.( 27) will be 

o r  

with 

If a s u f f i c i e n t l y  small constant i s  s u b s t i t u t e d   f o r  N ,  than B w i l l  be   posi t ive.  

For  each $ f 0, the   quan t i ty  m can be  selected so l a r g e   t h a t  eq.( 29) w i l l  con- 

t a i n  a contradict ion.  T h i s  proves t h a t  t h e  assumption  (26), i n  combination 

wi th   the  first r e l a t i o n  (23), i s  impossible   and  that ,   therefore ,   the   fol lowing 

theorem  applies : 

Theorem 2. In   the   resonance   case ,   four   cons tan ts  e .  M, D, N exist, from 

which  because of  eq. (30) a p o s i t i v e  B can  be  determined i n  such a manner that 



c 

each  solution g( t ) of  eq. ( 9 ) ,  wi th in   each   i n t e rva l   o f   t he   l eng th  - 2 . D N ' p  

assumes a t  least once a value s o  t h a t  
B IS1' Y 

I € ( 4  ="in ( E I N 1 T i S I )  

is  jus t i f i ed .  

Lemma. If B i s  r e s t r i c t e d  by 

l p l < $ . ,  w i t h  N Z < - - I C I  [see  eq.(30)] D M P  

then, i n  each   in te rva l  of  t he   l eng th  - ~ -  , the   fol lowing  es t imate  w i l l  

app ly   fo r  a t  l e a s t  one  value of t: 

2 D N  

B ISI' 

IE(i)(  >NvlFl. (32)  

Section 4. The P r i n c i p a l  Case 

In   the   fo l lowing ,  we will requ i re   t he  main theorem on implici t   funct ions 

as an auxiliary theorem. 

Auxiliary - theorem ~~. 1. Let   the  vector  

( 3 3 )  

(nl(Ql*.;.*an$P)) 

b ( ( l , B ) = b ( a l , a ,  , . . . ,a , .  8 ) =  v z ( a  ,,..., a.,B) 

un(a 1,...,an,#3) 

i n  a c e r t a i n   v i c i n i t y  of t h e   q u a n t i t i e s  

q = O ,  a,=O, ..., a,=o, p = o  

possess  continuous first de r iva t ives   t o  av a n d . l e t  t h i s  same vector  be  continu- 

ous in a l l  n + 1 v a r i a b l e s .   I n   a d d i t i o n ,   l e t  

b(O ,..., 0,0)=0; (34 1 
f i n a l l y  be the  functional  determinant 

au,(o, . . . . 0.0) 1- aak 
I + o  ( i , k = 1 , 2  ,..., n). (35 1 

Thus, for each s u f f i c i e n t l y  small a cons t ra in t  Bo w i l l  exis t   such  that ,  f o r  
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each B with !B I B O ,  a so lu t ion   vec tor  a = a (8 ) o f   t h e  systems of  equations 

t, (a,  19) = o (36) 

exists uniquely ,   for  which 1 a1 a0 . For  the  proof ,  see f o r  example another 

paper  (Bibl.3 1. 
.. ~ . , .. . 

This auxiliary theorem is  appl ied  as 'follows: Each solut ion  vector  f ( t )  

of  eq.(9) i s  character ized by i t s  i n i t i a l   v a l u e s :  

i.e., 

With r e s p e c t   t o  t ,  th i s   vec to r   has   t he   pe r iod  P i f  and on ly  i f  

This corresponds t o   t h e  argument  (36)  of  the auxiliary theorem.  For B = 0, /22 
t he   nu l l   vec to r   r ep resen t s  t h e  solution  of  eq.(9);  consequently,  eq.(34) i s  

s a t i s f i e d   s i n c e   t h e n   a l s o  a i s  t h e   n u l l   v e c t o r .  The assumptions as to   der iva-  

t ion  and  cont inui ty  o f  t h e  auxiliary theorem are  ensured by the  fol lowing 

auxiliary theorem, i n  accordance  with known theorems as t o   t h e  dependence  of t h e  

solut ion  vectors   of  eq.( 9 )  on t h e   i n i t i a l   v a l u e s  a and on the  parameter  8 

(Bibl.  4 ) .  

A u x i l i a r y  th-eorem 2. Within  the interval 0 s t 5 P, f o r  a given E ,  one 

pos i t i ve  8 1  and B 1  each  can  be  determined  such t h a t   t h e   s o l u t i o n s   f ( t )   o f  

eq. ( 9 )  satisfy t h e  estimate I f ( t  )I 5 in t h e   e n t i r e  interval i f  only I f (  0) I 5 

E1 and 13 I s B1 are selected.  

In  accordance  with  eq.(39), it i s  necessary ,   for   appl ica t ion   of   the  awdli- 

. .. 



are solut ions of  t h e  system of equations 

" "d:' - 23 (t) t)+ 

23(t),T ( a g i ( y y w )  (i. k = I ,  ..., n). 

wi th   t he  matrix 

Therefore,   the  vectors 

tlw = a=, ar(0. ..., 0 . 0 ; t )  ( l = l ,  ...,n) 

are so lu t ions  of eq.(lO)  since, i n   t h a t   c a s e ,  eq.(42)  passes  over  into  eq.(ll).  

The vectors   (43)  are l inear ly   independent   s ince   the i r   de te rminant  for t = 0 i s  

the   un i t   de te rminant  [see a l s o  theorem 4 in   another   paper   (Bibl .2)] .   Since,   in  

the   p r inc ipa l   case ,  we make t h e  assumption t h a t  eq. (13) and  thus a l so  eq. (10) 

[see theorem 8 (Bibl.2)I  has no so lu t ion   vec tors   per iodic   wi th  P, it follows 

t h a t  [see theorem 10 (Bibl.2)] 

A brief  examination  of  eq.(39)  indicates  that  this i s  exac t ly   the   condi t ion   (35)  

o f   t he  auxiliary theorem.  Since a l l  conditions of t h e  auxiliary theorem are 

proved t o  be va l id ,  i t s  argument - i n  our case,  eq.(39) - can be considered as 

a l s o  proved. 

Therefore ,   the   fol lowing  appl ies :  

Theorem 4. If eq. (13 ) has no so lu t ion   vec tor  A ( t )   pe r iod ic   w i th  P, con- 

s t r a i n t s  61 and $1 w i l l  e x i s t  for a given € such t h a t  an i n i t i a l   v e c t o r  g ( 0 )  

with Ig(O)l 5 €1  exists for each 9 with 131 5 fJ1, so t h a t   t h e   s o l u t i o n   g ( t )  i s  

periodic  with this i n i t i a l   v a l u e  g ( 0 )  and satisfies the  uniform estimate 



T h i s  represents  a portion  of  the  theorem 2. To prove this theorem /23 
completely, we w i l l  need s t i l l  another  theorem. 

Theorem 5. Assume t h a t  a f i n i t e   c o n s t a n t  E exists iuch that, a t  suffi- 

c i e n t l y  small I , the   fol lowing w i l l  b e   v a l i d   f o r  this so lu t ion  F ( t )   o f  eq.'(9) 

Proof. If 31 ( t ) ,  .., 3,  ( t )  are   l inear ly   independent   so lu t ions  of eq.(13), 

the  following  expression i s  obta ined   under   u t i l i za t ion  of t h e   p e r i o d i c i t y  of 

F( t )   analogous  to   eq.(38)   (Bibl .2)   for  v = 1, ..., n: 

[see also eq. (27) i .  The determinant   of   the   coeff ic ient  matrix on t h e  l e f t -  

hand s ide,   according  to   the  assumption of t h e   p r i n c i p a l   c a s e ,   d i f f e r s  from  zero 

[see  eq.(/+4)].  Therefore, t h e  l i n e a r  system o f  equations  (46)  can  be  solved 

f o r  t h e  components x1 ( t ) ,  . . . , x, ( t  ) of   F ( t )  on the   l e f t -hand   s ide ,   us ing  

Cramer's solution  formula. I f  , a t  f ixed  t ,  

x = Max I x . ( s ) l  ( Y =  1,2, ..., n), 
f g . , 6 f  + P 

then  an  estimate o f  the  following  form will be   ob ta ined   i n   t h i s  manner: 

it follows from  eq.(48) even  more so  t h a t  

i.e., 
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On the  basis  of  theorem 4, we can then assume t h a t   t h e   e x p r e s s i o n   i n   b r a c k e t s  . 
i s  posi t ive.  For example, f o r  €I 2 v f i L  - '- , this expression becomes 2 -. 
From this, the   e s t ima te  (45) with E = , h i K  i s  immediately  obtained. 

I 
2 

Instead  of  using Cramer's rule f o r   t h e   s o l u t i o n ,  it i s  n a t u r a l l y   a l s o  

p o s s i b l e   t o   s o l v e   e q . ( 4 6 )   f o r   g ( t )  by le f t -hand   mul t ip l ica t ion   wi th   the  matrix 

i n v e r s e   t o  [;r ;( t + P )  - a ( t  )I and  then t o  make the   e s t ima te  by means of 

Schwarz' i n e q u a l i t y  I g( t ) I  . This will a l s o   y i e l d  eq. (45). 
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PART I11 /27 
STUDY OF THE  RESONANCE  CASE IN SYSTmS OF LINEAR 

ORDINARY DIFFERENTIAL EQUATIONS 

Section 1. Introdu-ction 

Previously  (Bibl.1) we i n v e s t i g a t e d   t h e   l i n e a r  inhomogeneous d i f f e r e n t i a l  

equation system 
g = &t,z + 4 7 t )  

with a n-row matrix U(t  ) which, f o r   s i m p l i c i t y ,  was assumed as being  continuous 

and  having a continuous n-component vec to r  f ( t  ) o f   t h e  same per iod  P 

Bct + PI = act, , .7(t + P) = &t) 

The corresponding homogeneous system then w i l l  be 

and   the   ad jo in t  system 

where t h e   s u p e r s c r i p t  T deno tes   t he   t r ans i t i on   t o   t he   t r ansposed  matrix. 

I n  a l l ,  t h r e e  cases were d i f f e r e n t i a t e d :  The p r i n c i p a l   c a E  i s  p resen t  i f  

eq.(4) .has no so lu t ion   pe r iod ic   w i th  P; the  resonance  cas2 i s  present  i f  eq.(4) 

has a t  least one  solut ion  vector  3 ( t  ) per iodic   wi th  P, f o r  which 

i s  va l id ;   the   except iona l   case  i s  p resen t  i f  eq.(4) does  have  periodic  soh- 

t i o n s  q L ( t ) ,  92(t), ..., 3 p ( t )  (1 < p < n)   pe r iod ic   w i th  P but i f  the   fo l lowing  

i s  v a l i d   f o r  all t h e s e  3 u ( t > :  

,j" (TI / r (Z)d 7 = o f o r p -  1,2 ,...* f .  
0 ( 6 )  

Whereas, i n  t h e   p r i n c i p a l   c a s e  as well as in   t he   excep t iona l   ca se ,   so lu t ions  

28 



of eq.( l )  per iodic   with P, i.e., r e m i n i n g   l i m i t e d  for all values of t, are i n  

ex i s t ence ,   t he  values of a l l  so lu t ion   vec to r s  F ( t )  of eq.(l)  tend  toward in- 

f i n i t e   w i t h   i n c r e a s i n g  t i n  the  resonance  case,  independent  of  the i n i t i a l  

values. The i n d i v i d u a l   s t e p s   i n   t h i s   p r o c e s s  w i l l  b e   f u r t h e r   i n v e s t i g a t e d   i n  

the  present   paper .  

We use the   fo l lowing   no ta t ions  /28 
9 = (719 7 2 ,  .-., ?,I* resp. 9 -  (y-’jT (7) 

for denoting a fundamental system of so lu t ions   o f  eqs.( 3 ) and ( 4 ) ,  r e spec t ive ly  

[see eq. (17) i n  a prev ious   repor t   (Bib l - l ) ]  . I n  t h e  method o f   va r i a t ion  of t h e  

constants*,   using  the  abbreviation 
x 

ZJtI  = ”3p-  c ~ (t)  ( 9 - 1 ~ 2 ~ . . . , d  (8 1 
the   fo l lowing  argument i s  constructed for the   so lu t ion   of   eq . ( l ) :  

t h e  matrix y? - Ig”(t) . y t  + PI, 

which  had  been  discussed in   Sec t ion  2 p l ays  a dec is ive   ro le .  By a s u i t a b l e  

t ransformation,   the  system (1) can  be  brought t o  a ‘!normal form” (Section 3 )  

with  c0nstar . t   coeff ic ients ,  by means of  which the   s tudy   of   the   vec tors  x:-’) ( t )  

% With   respec t   to   the  method of var ia t ion   o f   the   cons tan ts ,  see footnote  on 
p *  5%. 
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can  be made  much more concise  (Section 4). Making use   o f   t h i s  method, four  

numerical  examples w i l l  be  given a t   t h e  end of   th i s   paper   (Sec t ion  5). 

A brief   report ,   to   be  publ ished  soon,  w i l l  apply  the  above  considerations 

t o   t h e   c a s e   o f  an o rd ina ry   d i f f e ren t i a l   equa t ion  of the  nth  order   with  per iodic  

coe f f i c i en t s .   I n   t ha t   pape r ,   add i t iona l  examples will be  given. 

Section 2. The Matrix W /29 

Theorem 1: The matrix !$, defined i n  eq.(lO), i s  a constant   regular  matrix, 

i . e .  , a matrix independent of t ,  under   the  first assumption [ eq.(2)]. 

Proof:  In  view of eq.(7),  eq.(3) can be   wr i t t en   i n  t h e  form of  W 

9'- fl<t>y (11 1 
Then,  a fundamental  solution matrix of  eq.(4) w i l l  be as follows  [see ( Bibl . l ) ,  

eq. (1711 : 

which means t h a t  

i s  valid.  According t o  eqs.(lO), (121, (l3), and (11) we then  obtain 

when t a k i n g   t h e  first relat ion  (2)   into  considerat ion.   Consequent ly ,  $ i s  a 

constant matrix. That i t s  determinant  di .ffers from zero  follows f r o m  t h e  non- 

vanishing  of  the two determinants   of   the   matr ices  on the  r ight-hand  side  of 

eq. (10). 

Theorem 2: If we pass  from a fundamental  solution matrix g ( t )   o f   e q . ( l l ) ,  

on n u l t i p l y i n g  on the  r ight-hand  s ide by a regular   constant  matrix 6, t o  a new 

fundamental  system 
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[see (Bibl. l) ,  Theorem 53, t he   fo l lowing   r e l a t ion  w i l l  b e   v a l i d   f o r   t h e  matrix 

!@ which  had  been  formed i n  accordance  with eq.(lO): 

This means t h a t  by a s u i t a b l e   s e l e c t i o n  of  the  fundamental system dt), t h e  

matrix !+I can be  transformed  into any n o m 1  form  which  can  be  produced  by a 

similarity transformation of  the  type  of   eq.( l5) .  

Theorem 7 :  Let the   cons tan t  matrix !$ be  given i n   t h e  Jordan  normal form L O  

[see  (Bibl.2),  Sect.19.11 

where  one  elementary component Q V  of  t he   o rde r  mv 2 1 in t h e  main diagonal  has 

the  e igenvalue A ,  and  contains   ones  in   the  next   higher   diagonal   (zeros  are not 

entered).  It i s  obvious  that  

n = m1 + m2 + ... + m 
8 .  (17) 

**.? (18 1 
Then, it i s  poss ib le   to   form a matrix& with  any real  number q, so t h a t  

-E 

* = e  

i s  va l id   and   t ha t  Si: has a normal  form of 



and p9 I ( - I)" f 4  1 
f o r  c= 1.2. ... m,,- 1. 

r.q .A, 

- Proof:  Let  us  form [see a l so ,  f o r  example,  (Bibl.3), pp.333//+] m 
In = In( a9 fY +x 1 9 ( 2 2 )  

where Qv i s  t h e   u n i t  matrix of  rank mv while t h e  mv-row matrix 

2 = ( O-.I:: . J 

has the  rank rnv - 1. By expansion i n  series, we obtain9 

9 The formula 
ln(l,t:> = ( ~ n ~ * ) . t . y  

used  here i s  equivalent   to  



[ s e e   a l s o ,   f o r  example (B ibLk) ,  p.821. For this, it i s  sugges t ed   t o   u se   t he  & 
principal   value  of   the  natural   logar i thm  In,   i .e . ,  

-7  < J(ln;L* 1 $ " # 
c 

(24) 

which agrees  with eq. (20). Taking  eqs. (21) and (19)   into  considerat ion,  we 

w i l l  obtain 
- 'Jq. * 
1 * 
9 

from which, by means of  expanding  the  exponential  function i n  a ser ies   [wi th  

respect  to  the  convergence,  see  for  exampleABibl. .!+),   p. l l91 , 

i s  obtained. From this ,   eq.(18)   with 4- can then  be  taken  from  eq.(19)  since, 

i n  forming  the  powers  of fiz-, t h e  elementary components F$v do not   exer t  a mutual 

inf luence.  

By an addi t ional   col l ineatory  t ransformation,   the  matrix $?: i n  eq.(19) can 

be  brought t o  the  Jordan  normal form. If Q r ep resen t s   t he  matrix of this simi- 

l a r i t y   t r ans fo rma t ion ,  i.e., 

Aq -6" Aq8d- * 

then !$ i s  transformed  into Q"?J!G, as readily  demonstrated by expanding t h e  ex- 

ponent ia l   funct ion i n  a series. We cam now write 
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T h i s  w i l l  y ie ld   the   fo l lowing:  

Theorem 4: The matrix rp can  be  brought t o   t h e   f o l l o w i n g  form by a simi- ,&J 

l a r i ty  transformation: A q  '9 

with Rq f r o m  eq.(  27). 

Lemma: If, spec i f i ca l ly ,  a l l  elementary  components of t h e  matrix ?.J have 

the   o rde r  1, a l s o  R, w i l l  be a diagonal matrix. 

Definit ion: Below, we will r e p l a c e   t h e   a r b i t r a r y  number  q by the   pe r iod  P 

o f   t h e   c o e f f i c i e n t s   o f   e q . ( l ) ;   i n  this case, we can  wri te   in   abbreviated form: 

Theorem 5: BY means of the  constant  matrix A [see eqo(29)  and (27)J, t h e  

fundamental  system g ( t )  of  eq.(3) can be w r i t t e n   i n   t h e  form 

where @(t) has  the  per iod P. Analogously, t h e  fundamental system 3 ( t )  of eq.(4) 

can be  brought t o   t h e  form 

where . .  

a l s o  has   the  per iod P. 

Proof:  It i s  t o  be demonstrated  that ,   in  the  argument (3O), 

= ,v(t) - e - &t = ( q t L  T2( t  I*...* ;T,(t)> (33 1 
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The conventional way of  construct ing  the  constant  matrix R ,  descr ibed   in  

developing  the  theorem 3, usual ly  i s  q u i t e  time-consuming.  That this procedure 

can be l e s s  cumbersome i n   c e r t a i n   s p e c i a l   c a s e s  i s  indica ted  by the  fol lowing 

theorems. 

Theorem 6: If t h e  matrix 8 ( t )  w i t h  i t s  i n t e g r a l  from 0 t o  t, periodic  

w i t h  P, i s  transposable,   i .e.  , i f  t h e   r e l a t i o n  

e x i s t s   i d e n t i c a l l y   i n  t ,  then  the  constant  matrix 

w i l l  y i e l d  

To t h i s  belongs t h e  fundamental  solution matrix 

with  the  following matrix, per iodic   with P, 

Proof: Below, t h e  two formulas which  can  be  proved by expanding  the ex- 

ponen t i a l   func t ion   i n  a s e r i e s  are used  [see  a lso,   for  example (Bibl.l+), Lu 

-2 I wish to   express  my t hanks   t o  Dr.H.Eltermann for developing  the  idea  of 
theorems 6, 7, and 8. 
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L 

F i r s t ,  i t  can be demonstrated on t h e  basis o f  eq.(40) t h a t  !J( t ), according t o  

eq.(37), i s  a fundamental   soluticn matrix of  eq.(l l) .  [But note:  g ( 0 )  = G o ]  

The constant matrix (see  theorem 1) can then be calculated  from  eq.(lO)  with 

t = 0, y i e l d i n g  

from  which  eq.(36) i s  obtained  with  eq.(35). 

It only  remains  to   prove  that   the  matrix @+'(t) defined by t h e  argument 

(37) i n  accordance  with  eq.(30),  can  be  written i n   t h e  form o f  eq.(38).  Because 

of  eq.(35),  @'=(t)  has  the  period P, s ince  

P 

The r e l a t i o n s  (37) and  (38) can be  reduced t o   t h e   i d e n t i t y  

i f  it can  be  demonstrated  [see eq.(39)] t h a t   t h e  matrix st.'-' i s  commutative with 

t h e  matrix sU(T)dT, i.e., i f  

.I " 

t 

0 

i s  val id .   Since  this   equat ion i s  direct ly   understandable  for t = 0, eq.(44) 

w i l l  be  obtained by d i f f e r e n t i a t i o n   t o  t, based on t h e  commutability  relation 



Taking t h e   p e r i o d i c i t y  of fll (t)  in to   cons idera t ion ,  we can  calculate  

P r t 3  

0 

and,  taking eq.(34) into  considerat ion,  

which  proves eqs. ( L 4 )  and  thus  a lso eq. (43  ). 
By a s imi l a r i t y   t r ans fo rma t ion ,   t he  matrix (35) can now be  brought t o   t h e  

Jordan  normal  form,  indicated i n  eq.(27), i n  such a manner that   the   sequence 

of cy1, a2 , . . . , ty, i s  t h e  same. This w i l l  y i e l d  a matr.ix 8’ , f o r  which  

do, 55P 
a $ =  e (47) 

with R from eq.(29) i s  val id .  The eigenvalues  of  the  matrices  (L7)  thus are 

mutually  equal.  Accordingly,  the  eigenvalues a v  of A and Ro can d i f f e r  a t  most 

by  nv - wi th   i n t eg ra l   nv .  Thus, we have 
a 1  

P 

[see also eq.(27)], i f  (3, denotes   the mv-row unit matrix [ see  eq.(17)]. This 

w i l l  l e ad   t o   t he   fo l lowing  theorem: 

Theorem 7: By a similarity transformation, fi”.ii” from  eq.(35)  can  be 
3,  I, rn 

t ransformed  into a matrix P which i s  correlated  with eq.(l+8) over from 

eq.(29), so t h a t  R can  be  calculated. 

Th-eorem 8: The assumption (31&) for t h e  theorems 6 and 7 can  be  replaced 

by the  stronger  assumption 
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at  a r b i t r a r y  t and 7. 

Proof: It i s  t o  be demonstrated now t h a t  eqo(34) (with arbitrary lower 

limit) follows  from  eq.(49). we calculate:  

Section 3. Transformation  of  the  differential^ - . Equation - . . - System 
t o  a Normal Form" 

. .  

Theorem 9: means of   the  t ransformation 

Z( t )  = @t> W ( t >  (51) 

with @(t) from  eq.(33), t h e  system of   d i f f e ren t i a l   equa t ions  (1) i s  transformed 

i n t o  t h e  following system [Floquet's  theorem,  see  for  example  (Bibl.3), 

Chapt.111,  Sect.5,  and s p e c i f i c a l l y  p.751: 

ars -64. w +  &t> 

a<t> - 4(t> ' 4 (t> 

dt (52) 
with [see eq.(32)1 

T 

(53)  

which  has the  constant  matrix R according t o  eqs.( 29) and ( 2 7 )  and  also  has a 

b ( t )   p e r i o d i c   w i t h  P. We will cal l   eq.(52)   the  normal  form of our  system of 

equations (1). 

Proof :   In  view of  eq.(32), a s u b s t i t u t i o n  o f  eq.( 51) into  eq.( l )   and 

consideration of  eq.( 53) w i l l  y i e l d  

It then  remains t o  demonstrate   that   the  matrix t o  be   appl ied   to  1) i s  equal 

t o  R, i.e., 

In   f ac t ,   r epea ted ly   t ak ing   eqs .  (33) and (11) in to   cons idera t ion ,  we obtain 



Theorem 10: The  homogeneous system 

conjugate   to  eq.( 52) has  no  other   solut ions  per iodic   with P than   so lu t ions  of 

Natural ly ,  an analogous  statement  applies  also  [see  eq.(12)] t o   t h e  system 

&I 5 -Ai& . ( 5 8 )  

a d j o i n t   t o  eq.( 56). 

Proof: The system of  equations  (56) i s  resolved  into  the  mutually  inde- 

pendent  systems 
* , I  = Ay 4, ( 1= 1,2, ..., SI. 

Here, we then  have 

Such  an individual  system  (59)  possesses  the  following mv-diimensional so lu t ion  

vectors  

footnote  on  p.321 

d i y  = 

eq.(61) w i l l  be  transformed i n   t o  
nQv(t) 
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Because  of eq.( 20) (with q = P),  t he   vec to r   (63 )  i s  per iodic  w i t h  P i f  and /kO 

only i f  

where CV has  been normed. The only normed solut ion  vector   of  eq.( 59),   periodic 

with P, w i l l  thus  be 

0 

The cor responding   so lu t ion   vec tor   b ( t )  o f  eq. (561,  which i s  per iodic   with P be- 

cause it i s  constant,  w i l l  have,  except f o r  a l a t  the   po in t  

( Y )  = ml + m2 + ... + m + 1 (66) 

with cyv = 0, only  zeros as components. The n-component solut ion  vector   of  

eq.(  56),  conjugate t o  eq.( 65), w i l l  be  denoted by b( v )  . This  means t h a t   i n  

eq.(60), a l l  = 0 must be  used a t  P f V, so t h a t  !UV will have t h e  value 

T h i s  w i l l  y i e ld   t he   aux i l i a ry   p ropos i t i on :  

Lemma: The constant   solut ion  vectors   of  eq.(  56),  i.e., the   vec tors   per i -  

odic w i t h  P, a r e   l i n e a r l y  composed of   the   vec tors  (67) withluv  from  eq.(65). 

Analogously, t h e  normed cons tan t   so lu t ion   vec tors   for  eq.( 58) a r e  

wi th   the  mv-component vector  

& # = O r  



whereutv] , in   addi t ion  to   zeros ,   has   only  one component 1 at the   po in t  

r*J = m, + m2 + ... + m y  with  d v  = o . (70) 

Taking  eqs.(30)  and (31) in to   cons idera t ion ,  we obta in   d i rec t ly :  

Theorem 11: The s o l u t i o n   v e c t o r s   h ( t )  of  eq.(3)  and a ( t )  of  eq.(4),  peri- 

od ic  

a d ,  

where (v)   and [v]  , respectively,   have  the meaning  of  eq.( 66) and  (70). 

Theorem 12: For the  systems of d i f fe ren t ia l   equa t ions  (1) and  (52), we 

always  have  simultaneously  the  principal  case  or  the  resonance  case  or  the ex- 

ceptional  case.  

Proof:  According t o  theorem 11, the  solut ioiIs  of  eqs.(L)  and  (58),  periodic 

w i t h  P ,   a r e  a t  a one-to-one  correspondence. In  addition  [see  eqs.(5),  (53), 

and (" l ) ] ,   the   fo l lowing   appl ies :  

can  be r ead   d i r ec t ly  from the  second  paragraph  of  Section 1. 

The matrix @(t),  defined  in  eq.(33),  i s  broken up i n t o   t h e  sum of' s n-row 

square  matrices 
( 7 3 )  

- 
( Y 1, ( 9 )  + 1, ..., LvJ conta ins   the   vec tors  XJt), ..., 'f-jt) 

but  otherwise  only zeros". The system  of   different ia l   equat ions (52)  decomposes 

- 

-x- Here,   the   notat ion of  eqs.( 66) and  (70)  has  been  used  for  the first time 
without the r e s t r i c t i o n  QV = 0. 



I 

into  the  independent  subsystems 

...,'=4 '6, + t;(t>, v =  1,2 )..., s, (74) 

where we always have t h e  dimension mv ; here,  b v ( t )  conta ins   on ly   the  components 

(v), ..., [v]  o f  b ( t ) .  Then, we have 

if t h e  n-component vector  

i s  defined. 

It would seem log ica l   t o   i n t roduce   t he   vec to r s  

i n  which,  however, a l l  n components may d i f f e r  from  zero, Tor which  reason t h e  

denotation was supplenented by an   as te r i sk .  This w i l l  y i e ld :  

Theorem 13: Each so lu t ion  t )  of eq.(l)   can be w r i t t e n   i n   t h e  form 

with XI?,') " ( t )  from eq.(77). 

Lemma: If, s p e c i f i c a l l y ,  9 has a diagonal  form, eq.( 7 8 )  with ( v )  = [v ]  = v 

spec ia l i :  ?s t o  



Resolving, i n  accordance  with eq. (73 ), 

+ I +(I) + $1 + ... + '4'"' , 

I &('I + A(*) + . .. + A'"), 
as well as 

the  following  theorem i s  obtained: 

Theorem 14: The vectors  (t  ), d e f i n e d   i n  eq.( 77), satisfy t h e  s systems 

of n d i f fe ren t ia l   equa t ions   each  

with 

under  use of  t h e  above  symbolism. 

and (76), we obtain 

It i s  r e a d i l y   v e r i f i e d   t h a t  

i n  which  case  the  form of t h e  matrix R(' )  must be  taken  into  considerat ion.  

This w i l l  f u r t h e r   y i e l d  

from  which,  according t o  eq.(77), the   cor rec tness  of eq.(82)  with  the first 

re la t ion   (83)  i s  obtained. The second  re la t ion (83) can  be  perceived as fol-  

lows: The zero  columns of Y' " )  are t r a n s f e r r e d   i n t o   z e r o  rows of I( ') . Conse- 
T 

quently,  i t  follows  from eq.( 53) t h a t  
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Section I,. Discussion of th-e- System o f - D i f f e r e n t i d   m u a t i o n s  
i n  t h e  Normal Form 

. .  

Theorem 1 5 :  L e t   t h e  matrix 8 have a diagonal  form  and l e t  3 1, . ., 3 be 

the  independent   solut ion  vectors   of  eq.(4) wi th   t he   pe r iod  P and,   f inal ly ,  l e t  

Then, for 1 2 p CJ (partial   resonance  case)%  each component o f  F!u) ( t )  [see 

eq.(79)] for which the  corresponding component & ( t )  does  not   vanish  ident i -  

c a l l y  assumes,  with  increasing t, values of  t he   o rde r  of lragnitude of t ;  for 

ex i s t s .  

Proof:  Since O ( t )  i s  per iodic   with P (theorem 51, the  analogous  theorems 

need  be  proved  only for t h e  b(’) (t) .  These  have  only  one component ( t )  &if- 

f e r i n g  from  zero  which,  according to  eqs.(52)  and ( ? 4 ) ,  satisfS.es  one  equation 

each of  t h e  form 
4 

vP= dpvp + b (t) ( pc=1,2, ..., n) /” 

The general   solut ion  reads 

with  an  arbi t rary  constant  c, e In   the   case  Yu f 0 (P = P + 1, . ., n), accord- 

i n g   t o  eq.(88)  and from the   condi t ion 

v/.. (t + P) = vp (t,: 

the   cons tan t  q, can be  uniquely defined as 

-% T h i s  case, however,  must not   necessar i ly   occur .  

I, Lr 



For CL = 0 + 1, ..., p ,  t h i s  i s  per iodic   with P a t  any se lec t ion   of  t h e  con- 

s t a n t s  q,. A t  FL = 1, . .., 0, eq.(90) can be   wr i t t en   i n   t he   fo l lowing  form [see  

eqs.(86)  and (88)l: t 

v P- (t) = l a  t +I[ b (z)- 1 a ) d T t C / , ,  ...,u- 
P P  /LC P P  (91) 

0 

Since   t he   i n t eg ra l  i s  per iodic   wi th  P, t h e   l i n e a r   i n c r e a s e  of q, ( t )  with t 

follows  from eq.( 91) and t h e  corresponding  statement for r:u) ( t  ) follows from 

eq.(79). 

This  theorem i s  a spec ia l   case  of t h e  following: 

Theorem 16: Let 8 not   necessar i ly   be a diagonal matrix b u t   l e t  it be 
NP 

given i n   t h e  form of 9 = e [see  eqs.(  29)  and  (27)1,  with  the  elementary com- 
sf'.. p 

ponents % = e " , where t h e  q u a n t i t i e s  RV are   the  e lementary components of t h e  

Jordan  normal form o f   t he  matrix R [see eq.( 27) w i t h  q = PI.  If 2"' f 1 

(principal   subcase) ,   then eq.( 74) will have a uniquely  defined  solution  vector 

D(,) ( t )   p e r i o d i c   w i t h  P,  s o  that   [see  eq.(76)1  the  vector  Y ( t ) ,  defined i n  

eq.(77),   has  the  period Po If e""' = 1 and  [see  eqs.(70),  (71),  and  (72) as 

wel l  as theorem  121 P r 

(exceptional  subcase),   then a one-parameter  family  of  solution  vectors & ( t  ) o f  

eq.(74),  periodic  with P,  w i l l  e x i s t  from  which a corresponding  family  of 

vectors  F C v )  ( t  ) w i l l  r e su l t .   F ina l ly ,  i f  the   fo l lowing   re la t ion  exists i n  
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a d d i t i o n   t o  $ = 1 

P P 

(resonance  subcase),  then  each  solution  vector 1 ) ~  ( t )  o f  eq.(74)  and  thus  also 

each g' ( t ) ,   w i t h  unboundedly increas ing  t, w i l l  take  values  of t he   o rde r  of 

magnitude t , provided t h a t  mv i s  the   o rde r  of qv and Rv. ( A  supplement t o  

t h i s  i s  contained i n  theorem 17. ) 

' V  of 

Proof: I n   t h e   c a s e  cyv f 0 (p r inc ipa l   subcase ) ,   l e t  us successively  solve 

the  system of equations ( 7 4 ) ,  s t a r t i n g   w i t h   t h e  las t  equation, 

The condition y~ ( t  + P )  = vu ( t ) ,  analogous t o  eq.(89), w i l l  successively  yield 

S t  If %(CY" ) f 0 ,  t h e   i n t e g r a l s   i n  eq.( 94)  with = sign %(ev ) m ins tead  of 0 
as lower l i m i t ,  will automatically have the   pe r iod  P, as can be readi ly   ver i -  
f ied.  Ir, tha t   case ,   the  las t  summands i n  eq.(  94)  must be omitted [ 9~. = 0 f o r  
PJ = [VI, [ V I  - 1, ..., (41. 
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L e t  0 

where,  because of theorem 10, it s t i l l  can  be  s t ipulated,  f o r  example, t h a t   t h e  

first compor.ent q( ( t )  o f  q ( t  ) s a t i s f i e s   t h e   c o n d i t i o n  

f 9,,, I t )  dt = 0 
0 

Then,  eq.('lL) i s  equ iva len t   t o   t he  two systems 

and 

Solut ion of eq. (102) i n  a manner  analogous t o   t h a t  used f o r  eq. (94),  w i l l  y i e l d  

-% 

The condition o"(t + P )  = 0"*(t),  because o f  t h e   f a c t   t h a t  b(7) = d(~) i s  v a l i d  

f o r  P = [v]  - 1, .. . , (v ) ,  w i l l  y i e l d  

Because of eq.(98), t h e   f i r s t   c o n d i t i o n  i s  automatically  satisfied.   Conversely,  

the  remaining  condi t ions  (104)   successively  yield  unique  values   for   the  constants  
>L Y x 

C"L V I  , CirC WI - 1 , . . . , cTy)+l , whereas C < V )  remains  completely  arbitrary.  This 

means t h a t  eq. (102) has a one-parameter family o f  so lu t ions  O?( t periodic   with 
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P. I f  now, i n   a d d i t i o n   t o  U V  = 0, also  eq.(92) i s  sa t i s f i ed   ( excep t iona l  sub- 

case),  then @ of  eq.(96) i s  the   nu l l   vec tor   and   eq . (102)   has   the   zero   vec tor  

as the   on ly   so lu t ion   vec tor   per iodic   wi th  P which satisfies eq.(100). This 

means t h a t   t h e  above  calculated  one-parameter  family  of  solutions  bt(t) ,  per%- 

odic  with P and  having c( v )  as parameter ,   furnishes   the  only  solut ions  bv(t)  = 

= 1 3 ~  ( t )   o f  eq.( 74), per iodic   with P. From this, t h e   q u a n t i t i e s  gy' (t), peri-  

x- 

%- 

with  the  highest   coeff ic ient  (f9J+,-o.)! . Consequently,   specifically q( ( t )  

will be a polynomial o f  the  degree mv . Since,  because  of  eq.(98),  the  terms 

vz-(t) i n  eq.(103)  increase a t  most l i k e  t , meaning t h a t  vTV, ( t  ) at  most 

w i l l  i n c r e a s e   l i k e  t , each so lu t ion  D v  ( t ) ,  w i t h  increas ing  t ,  w i l l  t a k e  

values   of   the   order   of  tmv in  accordance w i t h  eq.(99). The same statement  then 

a l s o   a p p l i e s   t o   t h e   v e c t o r s  gk" ( t )   t o  be calculated  from  eq.(77)  since,  accord- 

i n g   t o  eq.(3O), (P~,,) ( t )  cannot  be t h e  n u l l  vector.  

l o  

c V I  -0 

' m  -1 
V 

- 

Without fu r the r   p roo f ,   t hese  same considerations show d i r ec t ly :  

Lemma: The conponents v, ( t )  (0 = ( V ) ,  ( v )  + 1, . . . , [ V I ) ,  in   the   resonance  

subcase,  take  values of  the   o rder  o f  t w i t h  increas ing  t. The same 

s ta tement   appl ies   to   the   vec tor ia l  component summands vu ( t  )v, (t) ,  occurring 

i n   ( t  ) in  accordance  with eq. (77 ) ,   fo r  each s c a l a r  component f o r  which the  

corresponding component of Go ( t  ) d i f f e r s  from zero  (see  theorem  (17). B 

c V I  + 1-0 

- 



Theorem 17: In  the  resonance  subcase,  each component x+* ( t )  (0 = 1, 2, 

. . . , n )  of g y )  ( t  ) from eq. (77 )   t akes   a rb i t r a r i l y   l a rge   va lues   w i th   i nc reas ing  t, 

un le s s ,   fo r  example f o r  0 = P, t h e  components (F&U(P = ( V ) ,  ( v )  + 1, ., [VI ) 
o f   t h e  pth row vector   of  4 [see  eq.(33)] a l l  v a n i s h ;   i n  this case, we have 

x" ' ( t )  E 0. More accurately,  it can  be stated: If w e  do not have  xy',(t) p 0 

(see  above),  then x, ( t )  (p = 1, 2, ..., n) ,  w i t h  increas ing  t, w i l l  t ake  

values of the  order   of  t p rov ided   t ha t   i n   t he  P t h  row of 4' [see  eq.(73)], 

t he   quan t i ty  ~ p ~ , ( ~ ) + x  i s  t h e  f i rs t  component differing  from  zero.  

Proof:  According t o  eq.(77), (99), and (106), we can write 

c V )  

* P  
( V )  

n P  
.,-X 

&7t> = c j  '*)m ( y'?t, t ** 'VJ(t , )  , 

i f  q ( "\t ) o r  bSY "{ t )  represent   the  n-component vectors  supplemented by zeros 

from q, ( t  ) and bfc  t). Rather  than by eq. ( loo),  t he   r e so lu t ion  of eq. (99) i s  now 

r e s t r i c t e d  by the   s t i pu la t ion   t ha t   DT( t )  i s  t o  be per iodic   with P and normed. 

In   addi t ion ,  we have 

[ see  eq. (33 ) l .   I n  this 

vectors   with  the  per iod 

case, roc ,,) ( t ) ,  . . . , y[ VJ ( t  ) are   l inear ly   independent  

P while 4 ( t  ), according  to  eq. (106 1, i s  a polynomial 

- - 

i n  t of  the  degree  [note: 0 = ( v )  + A1 : 
CVJ+ I --=m,- A .  ( 108 

Thus, t h e  pth  component of eq.(107),  taking  eq.(105)  into  consideration, w i l l  

become 

S i n c e   t h e   f i r s t  sum i n  eq.(109) i s  per iodic   wi th  P, it will remain f i n i t e   f o r  

a l l  t. If ' p P J v ) + x  i s  t h e  first nonvanishing  coeff ic ient   in   the  second sum, 

then x!;) (t ) will t ake   va lues   o f   t he   o rde r  of  magnitude t with  increasing t. 
. ,-x 

We s t i l l  no te   t he   fo l lowing   ( s l i gh t ly  weaker) a l t e r n a t i v e :  
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Alterna t ive :   E i ther  x;;) (t)  assumes a rb i t ra r i ly   l a rge   va lues   wi th   increas-  

i n g  t or else x:>;) ( t )  1 0 i s  va l id .  

Note: If, corresponding  to eq. (73) 
’g = ‘9” + la“’+ . . . t yf.> (110) 

i s  defined,  then  from  the  vanishing of a l l  elements of  t h e  Pth row of %(’), be- 

cause of eqs.(30) o r  (33) ,   the  same statement follows f o r  d ‘ )  and vice  versa .  

Section 5. Exampl.es L52 

&ample 1: (Re theorem 15, resonance  case  and  exceptional  case,  and  theo- 

rem 8). 

Let us cons ider   the   sys tem  of   d i f fe ren t ia l   equa t ions  

x; = x1 c o s t  + x2 s i n  t + f l ( t )  

x; = - xl s i n  t + x2 c o s t  + f2( t )  

under   the  fol lowing two a s s q t i o n s :  

f l ( t )  = esin cos (1 - COB t ) 

f 2 ( t )  = - esint s i n   ( I  - c o s t  

and 
f l ( t )  = 2esin s i n  t s i n   ( 1  - cos t ) 

f 2 ( t )  = - 2esin s l n t  ’ cos (I  - c o s t )  * 

I n  e q . ( l l l ) ,  we have 

with 

( l l l b )  

It The numerals i n   f r o n t  o f   t he   pe r iod   r e fe r   t o  numbers i n   t h e  main t ex t   wh i l e  
the  numerals  behind  the  period  designate  the number of   the  example involved. 



be   the   zero  matrix, i.e., 
* =  f 

and 
c j  (t) - l p )  

as well as 

In   add i t ion ,  eq. (37) must  be  used as t h e   s o l u t i o n  matrix of eq.(3),  because of 

eq. (49)  (see  theorem 6). Taking  eq.(2.1) in to   cons idera t ion ,   th i s  w i l l  y ie ld  

Therefore, i t  follows  that" 

(12.1) 

All solut ions of eq. ( I + )  thus will have the   pe r iod  P 2rr. 
I n   t h e   c a s e  (llla), the  resonance  case i s  present   s ince i t  i s  ca lcu la ted  

t h a t  

i: IT  r r  

s j , T w , + ~ ~ , d z  = J 1 . d . r  = 2 5  (resonance  subcase) 

' 7  (86. la)  
J7( a d r z , L ~  = o.d r = o (exceptional  subcase) 

0 



Taking  eqs. ( 53 ), (751,  (76),  and (31.1) into  considerat ion,  we obtain h . 5  

and  thus,  under  consideration of eq.(30.1), 

I n  accordance  with  theorem 15, each component of X' (t) ,  w i t h  increas ing  t, 

will again  and  again  take  values of the   o rder  of t ,  while F (2) ( t  ), as a vector  

periodic  with 2rr, w i l l  remain r e s t r i c t ed .  The general   solut ion of e q . ( l l l )  

then becomes z (t)  =&"(t) +&%) . (78.1) 

I n  t h e  case   ( l l lb ) ,   the   except iona l   case   ex is t s   because  o f  

(86.lb) 

Analogous t o  eq. (113) ,   calculat ion  yields  

The general   solut ion o f  eq. (1111, composed i n  accordance  with eq. (78.1),  thus 
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has   the   per iod  2rr. 
Example 2. ( R e  theorem 1 5 ,  principal  case,   and  theorem 8).  1.26 

possesses   the  matrix 

k 2  - s i n t  I I + c o s t  1 
with 3 from  eq.(112)  and satisfies the  condi t ion ( 4 9 ) .  As i n  t h e  above  example, 

so  t h a t  

s ince  der ivat ior .  i s  made by t h e  method of power series which c o n s i s t s   i n  expand- 

ing   the   exponent ia l   func t ion  
.47? - 4  

Consequently, i n   t h e   d i a g o n a l  matrix q, w e  have [ see  eq.(16)1 

A, = A 2  = e . 2 T  

Thus, t h e   p r i n c i p a l   c a s e  i s  involved  here.   In  addition, we c a l c u l a t e  

s in ( l+2 t - cos t )  

cos ( l+2 t - cos t )  
". 

from  which, by means of eq.(lO), w e  again  obtain  eq.(36.2).  Analogous t o  1z2 
eq . ( l l 3 ) ,  we f ind  

- s in ( l+2 t - cos   t )  
( -2+I+c , ) ,  

2 '  
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With c1 = -1, t h e   q u a n t i t y   ( t )  becomes per iodic   wi th  ;trr while a t  cz = 0 t h e  

v e c t o r   f ( 2 ) ( t ) a n d   t h u s  also t h e   t o t a l   v e c t o r  ( 7 8 )  becomes t r i v i a l l y   p e r i o d i c .  

Example 3. (Re theorem 16, resonance and exceptional  case,  and  theorem 8). 

Consider   the  system  of   different ia l   equat ions 

with 

i f l ( t )  = 

f 2 ( t 1  - 
e s i n  t - 1 

e c i s t  - I 

and, respect ively,  [ f , ( t )  = eCoS - 
I f 2 ( t )  = 0. 

The coe f f i c i en t  matrix becomes 

i f  we def ine 

Here, ( t )   s a t i s f i e s   t h e  assumption (1,9). We can then   ca lcu la te   d i rec t ly  

so that,  because of Q 2  = 0, 

Consequently, Ip i s  an elementary component o f  t h e  rank m = 2, w i t h  t h e  eigen- 

value h = 1. Further,  we obta in  
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esin t "1- e~~~ t -2+ t e ~ ~ ~  t - 
c o s t  - I 

with 
1 , s in  t -  1 - e~~~ t - 2 

0 
I eCOS t -  1 

where  eqs.(?O),  (35.3), and (36.3)  have  been  taken into  considerat ion.  E)y means 

of 

the   fo l lowing  system of  equations i s  obtained: 

=A**. zc + %(t) 

B(t)  = $"(t) J ( t> - 
w i t h  [ see  eq. (32)] 

dt 

have 4 0 s  t + I  ' s i n  t - 2 c o s t  

0 

Because of zr 

the   resor ,ace   case  i s  present.  

From eq.(  52.3) [ see  also eq.(35.3)], we then  obtain 
- 1  

V; = v2 + e 

v ; = 1  , v 2 = t + c 2 ,  

; 
= $ +  c 2 t  + e  t + ~1 1 

- 1  
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so tha t ,   a cco rd ing   t o  eq.( 51.3), 

. . . .. .. 

I n  accordance  with  theorem 16, E: ( t )   t a k e s   v a l u e s  of t he   o rde r  of magnitude t"; 

i n  accordance  with  the lemma of theorem 16, 

and  again  are of the   o rder  of magnitude t", 

order of magnitude t. 

Analogously, i n   t h e   c a s e  of eq.(l l7b),  

VI ( t  and  thus  a lso x1 ( t  ) again /60 

while v2 (t ) and a (t) a r e  of t h e  

we obtain 

9 

SO that  the  except ional   case i s  involved  here. From eq.(  52.3) w e  obtain 

v; - v2 .( 1 

v ; = o  , V 2 ' C 2 ,  

VI = (1 + c2)t  + c1 , 

and  thus also, in  accordance w i t h  e q ~ ~ ( 5 1 . 3 )  and (120), 

(121b) 

56 



with 

c 1 I - c o s t  
fl(tl = - 2 e (sin t + cos t) 

f2(t) = e 1  - ti 

fl(t) = e l  - c o s t  

and, respect ively,  

f*(t) - 0 . 
The coef f ic ien t  matrix 

(122b) 

t 

i s  not  commutative e i t h e r   w i t h  % ( T I  o r  with r U(T )dT, as C a n  be  readily  checked 

by calculat ion.  From t h e  second  equation of t h e  system ( 3 )  we f ind ,   toge ther  
b 

with eq. (123 1, 

s o  t h a t  we can s e l e c t  

Hence /62 

The matrix q i s  p a r t i t i o n e d   i n t o   t h e  two elementary components y1 wi th   t he  

eigenvalue 1 = e and ?& with & = 1. an 

Further,  we ca l cu la t e  
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In .   the   case  of  eq. (122a),  because  of 
L T  

J J;(z, A < * > . ( Z  = 2 7  (86.4a) 
0 

the  resonance  subcase i s  p resen t   fo r  $2 and t h e  p r i n c i p a l   c a s e   f o r  We then 

use   the  method  of va r i a t ion   o f   t he   cons t an t s s   fo r   fu r the r   ca l cu la t ion .   In  t h e  

The quant i ty   rz( t )   again  and  again assumes values   of   the   order  of magnitude t 

while hl ( t  ), on se lec t ion  of ~-,l = 0, i s  per iodic   with 2rr. 9 

In   t he   ca se   o f  eq. (122b), because o f  

-2- On subst i tut ing  eq.(9) ,   under   considerat ion o f  eq. (8), i n t o  eq. (l), we w i l l  

For   the summands of eq.(9) i n  v i e w  of eq . (8) ,   th i s   furn ishes  



I 

t h e  exceptional  subcase exists fo r? ,   and   t he   p r inc ipa l   ca se  f o r  % . A s  above, 

Here,   g$(t) ,   for  any ~ 0 2 ,  has   the   per iod  2rr w h i l e   g r ( t )  has this o n l y   f o r  col = 0. 
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PART I V  /67 
THE  RESONANCE  CASE I N  LINEAR ORDINARY DIFFERET\ITIAL 

IQUATIONS OF THE n t h  ORDER 

Section 1. General ” Considerations 

I n   a n   e a r l i e r   p a p e r   ( B i b l . l ) ,  we invest igated  the  resonance  case  in   systems 

of n l i nea r   o rd ina ry   d i f f e ren t i a l   equa t ions   o f   t he  first order   wi th   per iodic  

coe f f i c i en t s .  Here, t h i s   t h e o r y  w i l l  be applied t o  l inear  ordinary d i f f e ren t i a l  

equations  of  the nth order  with  periodic  coefficients.   Consequently,  l e t  t h e  

d i f f e ren t i a l   equa t ion  
LrxIx x(n )  + al(t)x (n”)+... + a,(t)x = f(t), (1) 

be  given i n  which, for a l l  coe f f i c i en t   func t ions   and   fo r   t he   func t ion   f ( t  ), 

r ea l i t y ,   con t inu i ty ,   and   pe r iod ic i ty   w i th   t he   pe r iod  P are assumed: 

Usine  the  notat ions 
1x = x, 2x = XI,*.., nx = x(” - I) 

t h e   d i f f e r e n t i a l  equat.lon (1) i s  t ransformed  into  the system 

TO t h e  honogen.eous d i f f e ren t i a l   equa t ion   con juga te   t o  eq.(l)  

the  following  system of d i f f e ren t i a l   equa t ions  w i l l  then  correspond 
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with 

The homogeneous d i f f e ren t i a l   equa t ion ,   ad jo in t   t o   eq . (6 ) ,  
- 
L ~ 2 3 %  ( - 1 ~  z~n~+(-l)n-l(~,(t)z)(n-l) +... +an(t)z=o 

when us ing   t he   no ta t ions  

(a,z)' + z " 

n-2~8 + a3 nz = a3z - (a,z)' + (a1z)"-z"' 

1z "*X1+"-, ,L rc._, t - 
,,z' + an nz = L CzJ 

w i l l  be  transformed  into  the  system o f  d i f f e ren t i a l   equa t ions  

w i t h  

In   another   paper  CBibl.2, eq.(17)1, the   fo l lowing  was demonstrated: 

If g( t ) i s  a fundamental solution matrix of eq.( 7), then 

( 9 )  

is  a fundamental  solution matrix of  c?q.(ll). According to   another   paper  /69 
[ (Bibl . l ) ,   eq.(30)] ,  a fundamental   solution matrix V ( t )  sf the   fo l lowing   fo rd -  

%- For abbreviat ion,  we w i l l  l a t e r   w r i t e  lC&(t) = % (t) and  analogously i n   t h e  
first component of other   vectors .  
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exis ts ,   having a matrix @ ( t  ) periodic   with P and a constant matrix R which 

l a t t e r  i s  w r i t t e n   i n   t h e  Jordan normal form [see  (BibLl),  eqs.(27),  (281,  (2911, 

from  which, f o r  the  fw-damental   solut ion matrix (13), the   fol lowing  presentat ion 

i s  obtained  [see  (Bibl.1)  eqs.(31)  and  (3211: 

We w i l l  t reat   the   general   case  [see  (Bibl .1)   eq.(27)]   that   the  matrix R i s  

p a r t i t i o n e d   i n t o  s elementary components 

w i t h  t he   o rde r s  mV, i n  which case  the  fol lowing i s  assumed t o  be   va l id  

f a r  1 - I,..., f 

f o r  r r =  f +  l,...,~ 

the  constants  [see  (Bibl. l) ,   eq.(9>]  and  the  footnote on p.58, w e  obtain 
/70 

[see  eqs.( 5) ,  (lo), and  (13)l  which  can  be  resolved, i n  t h e  form  of" 

x( t>  - 2 x( t )  
r- l  

'' We changed t h e  symbol x(") i n t o  'x from tha t   used  in our   f i r s t   pape r   (B ib l .1 )  
so  as to   prevent   confusion  with  the  der ivat ives .  



w i t h  t h e  summation indices   [see  (Bibl . l ) ,   eqs . (66)   and (70)]: 

i ( 9 )  - ml + m2 + ... + m,,-l + 1 

[VI - B1 + p2 + ... + I 

For  the components x ( t )   w i t h  v = p + 1, . .. , s, we can  a V ssume t h  .at they 

a re   func t ions   per iodic   wi th  P. These are uniquely  determined  [see  (Bibl.1) 

theoren: 163. 

I n   t h e   c a s e  v = 1, 2, ..., p ,  the   fo l lowing  i s  obtained i n  accordance  with 

our- first paper [ (Bibl.1)  eqs.(l09)  and  (106)l: 

where 'Q, ( t  ) has the  form 
A 

The ~ ' : ~ ) + ~ ( t )   d e f i n e d  elsewhere [ (Bibl.1) eq.( 99)i a r e  of no importance  here. fi 

It i s  fur ther   found  tha t   the   cons tan ts  'C as ide  from depending on V ,  depend 

only on the   d i f f e rence  c1 - Y ;  thus ,   us ing 
Y!JJ ' 

., r, 
C = d p-# */- (25)  

eq. (23 ) can  be  replaced by 
#- v$m=x *'LP-y Y,,,,., f o r  p- 0 9 1 ,  ..., m,- I; (26)  

u-0 

with   the   p rocedure   be ing   the  same for  eq.(24).  The q u a n t i t i e s  'ev w i t h  CL - 

- y > 0 a re   a rb i t r a ry   i n t eg ra t ion   cons t an t s ,  whereas 

9 . r  
de= c p p  p arV3 (/L= 0.1 *... *mV - I) 

with  [see  (Bibl. l) ,   eqso(86),   (921, ( 9 3 )  and   no te   n ;v~   ( t )  = ZCVI  ( t )  according 

I (27)  

t o  eq. (IO)] 

. ..... 



In  the  resonance  subcase (V  = 1, ... , 0) t h e   q u a n t i t y  'x(t) w i l l  always  be a 

polynomial  of  the  degree mv w i t h   t h e   c o e f f i c i e n t s   " % ( t )  which i s  per iodic  

with P, while the   coe f f i c i en t  "Do ( t )  o f  the   h ighes t  power i s  obtained from 

eqse(14),, (261, and (27) as 

'O,(t) - p aLvJ Y,*( t )  ( 9 - ~,...,c 1, I 
( 2 9 )  

which means t h a t  it i s  an  eigenfunction  of  the homogeneous d i f f e r e n t i a l  equa- 

t i o n  ( 6 )  per iodic   wi th  P. If , i n   t he   excep t iona l   subcase ,  'dB" with   the  small- 

est 8, > 0 i s  t h e  first nonvanishing  coefficient (25), we w i l l  ob ta in  i n  an 

analogous manner, provided   tha t  B V  < m,, 

I n  w h a t  follows,  eq.(22),  omitting  the  highest  t-powers  with  vanishing  coeffi- 

c i e n t s ,  w i l l  be   wri t ten i n  t h e  following form: 

A so lu t ion  (19) o f  eq.(l) which i s  represented i n  the  form (31) f o r  v = 1, 

. ., P and which i s  per iodic   with P f o r  v = p + 1, .. . , s, w i l l  be  denoted  here 

as t h e   ? b o r n 1   s o l u t i o n f f .  Such a normal so lu t ion  can  be w r i t t e n   i n   t h e  form of 

where 

i s  used  and  where t h e  Y b ( t )  are composed o f   t h e  '$(t) i n  eqs.(26)  and (2k), t o  

y i e ld   func t ions   pe r iod ic   w i th  P. 
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It should  be  emphasized  again that, i n  eq.(32), o n l y  one  special   solut ion 

of the   p r inc ipa l   subcases  i s  used,  namely, t h e   s o l u t i o n   p e r i o d i c  w i t h  P, whereas 

in the  resonance  and  exceptional  subcases  the  complete  solution i s  used  with mv 

a rb i t r a ry   i n t eg ra t ion   cons t an t s .  rn 
I n  view of  eqs.  (29)  and (301, the  following  theorem can  be  confirmed: 

Theorem 1: If , i n  eq.(33) , w > 0, t hen   t he   f ac to r  YO (t) of   the   h ighes t  

power t occurr ing  in   eq.(32)  w i l l  be a nonident ica l ly   vanish ing   so lu t ion   of   the  

homogeneous d i f fe ren t ia l   equa t ion  ( 6 ) ,  per iodic   wi th  P. 

W 

It is  direct ly   obvious:  

Theorem 2: If the  resonance  subcase i s  v a l i d   f o r  v = 1, ..., (J > 0, t h e  

order  of  the  powers  of  x(t  ) i n  eq. (32) w i l l  be a t  least 

Y > A=* >.a .IL . 
@ <*=*#...,-) -* = p=*,...,-> (34) 

and a t  l e a s t  one   so lu t ion   x( t )  will e x i s t   f o r  which 

0 L A*# 4 . 
<v=%.-.& 

This la t te r  s ta tement   fol lows  direct ly  from a consideration  of  eqs.(26),  (27), 

and  (31). 

A success ive   d i f f e ren t i a t ion  of eq. (32)   to  t y ie lds  

k = 1 ~ 2 ~ .  ..,(n - 11, 

where the   formal ly   wr i t ten   func t ions  Y p )  ( t )  w i t h  < 0 must be replaced by 

zero. From this, the   fo l lowing  i s  d i rec t ly   ob ta ined:  

Theorem 3: If YO ( t  ) i n  eq.(32) i s  not   constant ,  all der iva t ives  x' k, ( t  ) of 

eq.(32),  with k = 1, . . . , n - 1, have t h e  same sequence  of power increment t 

as x ( t  ) i t s e l f .  If, conversely, YO , YI , . . . , Y & l  are constant  whereas Ya(  t ) i s  

UJ 

66 



not   constant ,   the  power orders  of  t he   de r iva t ives   o f   x ( t )   dec rease   success ive ly  

e 1 down t o  x(') ( t  ) and,  from  then on, remain  constant  equal  to w - 4. 

Section 2. The Case a. (t f 0 

Cons ide r ing   t ha t ,   i n   t he   ca se   o f  

a,(t> * 0 (36) 

t h e  homogeneous d i f f e r e n t i a l   e q u a t i o n  (6)  i n  eq.(l)  cannot  have  constant  solu- 

t i ons ,  it fo l lows   d i r ec t ly  from  theorems 1 and 3: 

Theorem 4: Under the  condi t ion  (36) ,  all der iva t ives  x(k) ( t )  (k = 0, 1, 

... , n - 1) of a normal  solution  (32)  of  eq.(l)  always  have  the same power order. 

- Note: The only  exceptional  case of theorem 4 can  possibly  be  the  case of 

x ( t )  = Const. = C t o (37 1 
which occurs   for  

f(t) = Ca,(t) (38) 

s ince ,  i n  tha t   case ,  x(') ( t )  H 0 f o r  4, 2 1. It is  worthwhile t o  group this 

trivial but   in te res t ing   spec ia l   case   wi th   the   genera l   cons idera t ions .  

Primarily,   the  resonance  subcase must not  occur  here  since  then  terms  with 

t-powers  would necessarily  enter  in  eq.(32).   Consequently,   the  assumption of a 

s o l u t i o n   f t a ( t )  of eq . ( l l ) ,   per iodic   wi th  P, f o r  which [see eqs.(28)  and  (38)] 
? 

Consequently, f o r  V = 1, .. . , P the   except ional   case exists while f o r  v = 

= P + 1, . . . , s the   p r inc ipa l   ca se  i s  present ;   here  P = 0 and p = s i s  a b i s -  ,& 



s i b l e .  

F i r s t ,  l e t  us c a l c u l a t e   t h e   v e c t o r  

f o r  the  special   case  involved  here .   According  to   another   paper   [ (Bibl . l ) ,  

Consequently,  taking  eq.(38) as well  as t h e  first and las t  

system (10) into  considerat ion,  we have 

We then   def ine   the  row vectors  

equations of t h e  

so tha t   t he   fo l lowing  i s  v a l i d  f o r  the  corresponding column vectors:  

Equation ( 7 4 )  (Bibl. l) ,  namely, 

Is,' = A9 W !  t a, i t )  
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as r e a d i l y   v e r i f i e d  by eqs. (.I+!!) and (bl), has t h e   s o l u t i o n  

Is, I t )  = c. ,y, It, , 1 -  1,2 ,...,E!. (46) 

pe r iod ic   w i th  P. Thus, eq.(32) according to   [ (B ib l . l ) ,  eqs.( 7 9 )  and ("?)I can 

be   wr i t t en   i n   t he   fo l lowing  form: 

A m-i 

x(t) = c .r.>t 
.#A as* 

where, i n  t h e  last transformation, 

( 4 7 )  

with eq.(15). 

Section 3. The - Differen t ia l   Equat ion  Reduced i n  Order 

Each so lu t ion   of  eq. (52)  simultaneously i s  a so lu t ion   of  eq.( 9). 

Conversion of t he   d i f f e ren t i a l   equa t ions  (SO), (rl), and ( 5 2 )  i n t o   t h e  

corresponding  different ia l   equat ion systems o f   t h e  f irst  order ,   toge ther   wi th  

-% The t r i v i a  
the  reduced 
case or t h e  

.1 case j = n l e a d s   t o   t h e   d i f f e r e n t i a l  e uat ion x' (t  ) = f (  t ) with 
equation [see eq.(49)  and  (50)l 2 x t )  = f ( t ) .  The resonance 
exceptional  case i s  present  depending  on  whether  the mean value 

t n ) ?  

- f f (  7 )dT i s  not   equal  o r  i s  equal   to   zero.  
1 
P ; ;  
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will y i e l d  

and 

with the matrix 

Now l e t  

+, , Q 



be a fundamental  solution matrix of t h e  reduced homogeneous d i f f e r e n t i a l  equa- 

t i o n  (51)  so that, for   G( t ) ,   the   fo l lowing   representa t ion  [see eqs.(ll+) and 

(1911 applies:  A 2 r̂  4 -& 
A A At- 2 V$J (1, = -4J I t )  = y ( C X  
I$ e)= 40).  e - v.= 1 1=i (60)  

v=l 

w i t h  the  fundamental  subsystems: 

and  the  periodic  submatrices:  
c 

3 I t )  = 

c 

Again, l e t  us assume [see eq. (17 ) ]   t ha t  

where, as always i n   s p e c i a l   c a s e s ,  6 can  be  equal t o   ze ro  or $. I n  that case,  

t h e  matrix $ ( t )  can  be  expanded i n  t h e  following manner t o  a fundamental  solu- 

t i o n   m a t r i x g ( t )   o f   e q . ( 6 )   [ s e e  eq.(58)1: 
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Here,  the  square matrix n%(t )  i s  successively  constructed by i n t e g r a t i n g   t h e  

first row of t h e  matrix $ ( t )   i n  which case  the  integrat ion  constants   can  be 

a r b i t r a r i l y   s e l e c t e d .  

Next, we p a r t i t i o n   t h e  matrix ?$(t), analogous t o  eq.(61), i n   t h e  form  of 
/81 

into  the  square  submatr ices  v!$. 

Then, we can formulate t h e  following  theorem. 

Theorem 5: If the   reduced   d i f fe ren t ia l   equa t ion  (51)  has exac t ly  8 inde- 

pendent  solutions f(  , FC2)  , . , ;? periodic   with P, ther ,  t h e   d i f f e r e n t i a l  

equation ( 6 )  e i t h e r  will have a l s o  exact ly  6 independent   solut ions,   per iodic  

w i t h  P, o r   e l s e   e q . ( 6 )  will have  exactly 6 + 1 independent   solut ions  per iodic  

with P. In   t h i s   ca se ,   t he   fo l lowing  i s  val id   [see  the  notat ions  of   eq.(=)] :  

1) If, f o r  a l l  y ( , , ) ( t )  ( V  = 1, ..., 6), 

appl ies ,   then eq. ( 6 )  w i l l  5ave  exactly 6 + 1 independent   solut ions  per iodic  

with P. 

2 )  If, conversely,   for  at   least  one y( ,,) ( t )  (V  = 1, . .., P ) ,  the   fo l lowing  mean 
6 

value 
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appl ies ,   then  eq.(6)  w i l l  have  exactly 6 independent   solut ions  per iodic   with P. 

For a proof ,   the   fol lowing  s imple  auxi l iary  theorem i s  required: 

Awliam theorem:  Let  g(t)  be a funct ion  per iodic   with P, f o r  which 

T 
J g ( t ) d t  = o ( 6 8 )  

i s  va l id .  Then, exact ly   one  funct ion  h( t  ) = g( t   )d t   per iodic   wi th  P will exist, 

f o r  which 

i s  also val id .  

? 1 h ( t ) d t  = o 
0 

Proof:  For  each  constant  h(o), 

h ( t )  * 1 g(r> d 7  + h(o) 

i s  per iodic  w i t h  P. For a uniquely  defined  constant  h(o),  eq.( 69) w i l l  then 

/82 

apply 

Application o f  t h e  auxiliary  theorem f o r  proving  the  theorem 5 proceeds  as 

follows : 

1) Let j ? ( , , ) ( t ) d t  = o (far I =  I,...~;) [see  eqo(66)3. 

By j in tegra t ions   o f   the   func t ions  i, ")  ( t )  ( v  = 1, .. ., c ) ,  i n  which  case  the 

in t eg ra t ion   cons t an t s  must  be  determined  each  time in   accordance  with  the audl -  

iary theorem,  exactly  one  function y( ( t  ) having a mean value o f  zero  and  being 

per iodic   with P will be  obtained  for  each  ( t) .   Accordingly,   based on t h e  

tr ivial  so lu t ion  5o ( t  ) E 0, the   func t ion  yo ( t  ) I 1 w i l l  be  obtained as a f u r t h e r  

solut ion  of  eq.(6) per iodic   wi th  P. That this so lu t ion  is  independent of t h e  

above-defined  solutions y( ( t )  (v  = 1, 2, . . . , 6 )  follows from t h e   f a c t  t h a t  

a l l  t hese  y(") ( t )  have t h e  mean value 0, w h i l e  yo (t) has t h e  mean value 1. That, 

i n   a d d i t i o n ,  t h e  y( ( t  ) (v  = 1, . . . , P^ ) are a lso  mutual ly   and  l inear ly   inde-  

0 

( "1 

V )  
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pendent  follows  from  the  linear  independence of t he   func t ions  $( ( t )  after j 

d i f f e ren t i a t ions .  

2 )  Conversely, i f  not  a l l  ?( v )  ( V  = 1, . .., 6 )  have a mean value of zero, new 

solutions  can  be  obtained by l i n e a r  combination  which,  again, w i l l  be  denoted 

by & 1) , ... , f(  6 ,  , t h a t  can be so  d e f i n e d   t h a t ,   f o r  example, ?( 1) has   the  mean 

value 1 while  the  remaining  y(v) ( V  = 2, ..., 6 )  have  the mean values  0, i.e., 

L 

By j i n t e g r a t i o n s  of the   func t ions  Fc w) ( v  = 2, ..., 6) and in accordance  with /83 

the   auxi l iary  theorem,  again 6 - 1 solu t ions  y( V) ( t )  of  eq.(6),   periodic  with P 

and  having a mean value  of  zero, will be obtained which are   mutual ly   and  l inear-  

l y  independent. An i n t e g r a t i o n  of ?( 1) ( t )  would y i e l d  a so lu t ion  y( 1) ( t )   n o t  

per iodic   with P. However, t h e  trivial so lu t ion  YO ( t )  0 aga in   l eads   t o   t he  

so lu t ion  yo ( t )  3 1 periodic   with P which, toge ther   wi th   the   func t ions  y( ( t ) ,  

. . . , y( 8, ( t  ), foIllls a system o f  P  ̂ l inear ly   independent   so lu t ions  of eq.( 6), 

per iodic  w i t h  P. 

F ina l ly ,  it i s  easy t o  demonstrate  that eq. (6)  can have  no f u r t h e r  solu- 

t ion   per iodic   wi th  P. L e t   y ( t  ) be any nonconstant  solution of eq.( 6)  per iodic  

with P;  t h e n ,   F ( t )  = y"' ( t )  w i l l  be a so lu t ion  of t he   r educed   d i f f e ren t i a l  

equation (51)  per iodic   with P which, i n   add i t ion ,   has  a m e a n  value of  0 because 

of the  different ia t ion  process;   consequent ly ,  y") ( t )  must  be l i n e a r l y  com- 

posable  of  the  already known so lu t ions  ?( ( t  ) ( V  = 1, . . . , 8 ) .  

It should  a lso be mentioned  that   the   solut ion  vectors  $ ( t )  o f  eq.( 56) must 

be  completed i n t o   t h e   s o l u t i o n   v e c t o r s  3 ( t )  of eq. (11) by a success ive   d i f fe r -  
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ent ia t ion   p rocess  i n  accordance  with  eq.(lO),  toward components with smaller 

indices .  

Section 4. Defini t ion . _. __ of a Spe-cial No-+ Form of tJe Fundamental 
S k s t q  o f   t he  - Reduged ". Homo&necus D i l f e r e n t i a l  " Equation 

/8b 

Unfortunately,   for   solving  the  reduced system of d i f f e ren t i a l   equa t ions  

(54), it i s  no t   su f f i c i en t   t o   mere ly   b r ing   t he  matrix 3, int roduced  in   accord-  

ance  with  eq.(14),   to  the  Jordan normal form, i n  view o f   t h e   f a c t   t h a t   t h e  main 

purpose of t he   t heo re t i ca l   cons ide ra t ion  i s  a discussion  of   the  system  (4) .   For  

this, it i s  necessa ry   t o   ob ta in   t he   squa re  matrix V)%(t) occur r ing   in   eq . (64)  i n  

as concise  and  simple a form as   poss ib le .  For this purpose,  the  fundamental 

system ( 5 9 )  of   so lu t ions  of the   reduced   par t ia l   equa t ion  (51) i s  brought t o  a 

special   normal form, which w e  w i l l  charac te r ize  by the   fo l lowing   proper t ies  of 

t he   ma t r i ces  (62) occurring  in  eq.(60):  

Def in i t ion :  

1) A t  hv = 0 ,  e i t h e r  t h e  fol lowing mean v a l u e s   a r e   v a l i d   f o r  c1 = ( V I ,  . . . , [VI 
P 
I qP(t)dt = o f o r  dl W ( 7 1 )  

P o  

o r  an index 0 S iv 5 i;lV - 1 (6iv = [v] - (u) + 1) e x i s t s ,  SO t ha t   t he   fo l lowing  

i s  v a l i d  f o r  t h e  mean value: 

2)  The elementary  coqonents   are  so arranged t h a t ,  f o r  v = 1, . . m ,  h ,  sub- 

s c r i p t s  iv exist whereas,   for v = h + 1, . . . , 8 , all mean values  (71) are equal 

to   zero.   For  v = 8 + 1, . .., 3 ,  we have ct'y = 0 ;  here, t he  elementary components 

are no t   r e s t r i c t ed .  
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3)  The o rde r s  i& increase  monotonical ly   for  v = 1, . . . , X: 
6 4  
m > mj-l , I , . - - * X *  (73) 

s o  t h a t   t h e   i n e q u a l i t i e s  /85 
ill> iv-l * my- i,,> mv-l - i,-l f o r  J= 2 ,..., 2. A h 

(74 )  

a re   va l id .  The elementary  components f o r  which all mean values   vanish are a l s o  

arranged  in   accordance  with  increasing  values  of i& e x c e p t   t h a t ,   i n   t h i s   c a s e ,  

only 

appl ies .  

For cons t ruc t ing   th i s   spec ia l   normal  form, we w i l l  need  several  new  con- 

cepts  and  theorems. 

Let [see eq. (14,) and t h e   n o t a t i o n  (4211, under   the  assux@,ion of cy,, = 0, 

be a fundamental  subsystem  belonging t o   t h e  vth  elementary component. E i the r  

a l l  mean values are 2 

mp = $ / ?+ (t)dt = o for+= (9) *..-.* LgJ, (77) 
0 

or one iy exists, so t h a t  

Mp i = o f o r  (+>$,+<~~) Sir J 

+ o for p = CY1 ii9 J 0 ,( i, $ 4*-1 I 

L a r b i t r a r i l y f o r  /''(vJ*'' 

Then, the   fo l lowing   appl ies :  

Theorem 6: A regular matrix 
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= r, i t2 t a. 

fundamental 

i t  i s  immaterial,  because  of  eq.(l4),  whether  the  transformation 6 is  applied 

t o   t h e  ?p o r   d i r e c t l y   t o   t h e  $. The row vec tor  

V 

i s  then  t ransformed  into  the column vector  

If , f o r  each  subscript  CL, t h e  components 

a re   s epa ra t ed   i n to   t he   cons t an t  mean value &L [see eq.( 78)  J and i n t o   t h e  func- 

t i o n  .j;ll(t) of a mean value  zero,   the   fol lowing  appl ies   in  a readily  understand- 
N 

able   no ta t ion  : 

The row vec tor  9 I V  i s  then t o  be  transformed by t h e  l as t  summand i n  eq,(82)  into 
I 



ThisCsee  eq.(79)]  leads  to  the system of  equations: 

The f i rs t  iV equations are automat ica l ly   sa t i s f ied   because   o f  eq.( 78). The r e  

maining  equations  successively  lead  to  solutions:  c( V )  , c( V )  + x ,  . . . , ccv3 - 1  V ,  

i n  which case we d e f i n i t e l y  w i l l  have c( V )  f 0. This means t h a t  "6 i s  regular. 

[ In   the   case   tha t ,   ins tead   of   eq . (62) ,  a l l  = 0 (see  eq.(77))  one can simply 

pose E =6V.I  
' V  

From now on we can  assume that  the  fundamental  subsystems (?( V )  , . . ., 
j;,,, ), f o r  a l l  v ,  have a t  l e a s t   t h e  first property  of   the   special   normal  form. 

The fu r the r   p rope r t i e s  can be es tab l i shed  by means  of the  following  theorem: /88 
Theorem 7: Le t ,   in   addi t ion   to   the   fundamenta l   subsys tem (76),  another 

fundamental  subsystem  be  given: 

so t h a t ,   i n   c o n t r a s t  t o  eq.(74), 

the  following  simultaneously  applies:  
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The right-hand  inequality i n  eq.(89) i s  t r i v i a l l y   s a t i s f i e d .  Then,  by s u p e r  

posi t ion  of   these two systems, a fundamental  subsystem ~ f i v " '  analogous t o  

eq.( 76) can  be  formed f o r  which the   func t ions  q( v:, . . .? Q C V J  , which are per i -  

odic  with P all w i l l  have t h e  mean value  zero.   In this case, t h e  fundamental 

system lhk remains unchanged. 

n 8 

A T  

Proof: If t h e  new so lu t ions  ?p'- of eq.(51)  are formed i n  accordance w i t h  

t h e   s t i p u l a t i o n  

.=( 1, 
f o r . y z w )  , ~ > t q > . * -  D ~ ~ t i - $ - a  

(90) 
A "  

Ap-J(h)tp-((v)+5-ib) fory=i~Jti;frMti;ftl)...,(~Jt~-l SCfl], 

the   fol lowing w i l l  be  obtained,  because  of  eq.(l,!+), for   the   cor responding  func- 

c 

Here, eq. (89) guarantees   the  correct   values   of  CL f o r  eqs.(90)  and (91) while 

eq. (88)   ensures   that  
( A )  ,< ( h ) t p  - ( ( V I +  L,,-L,,) [ h l  

i s  applicable.  It can  be  confirmed t h a t   t h e   f u n c t i o n s  h3' from  eq.( 91)  have /8q 

a zero mean va lue   s ince ,   fo r  CL ( v )  + iv, we simultaneously  have ( k )  + p - 
- ( ( V )  + iv - & ) = (k) + i, . Thus,  theorem 7 i s  proved. 

Now,  we can e s t ab l i sh  a ce r t a in  normal  form by also s a t i s f y i n g   t h e  condi- 

t i ons  2 and 3 of i t s  def in i t ion .  Each elementary component w i l l  be  denoted by 

a p a i r  of numbers (GV, iv) o r  (I&, fiv) i f  no iv exis t s .   In   addi t ion ,  we calcu- 

l a t e   t h e   d i f f e r e n c e s  f iv  - iv and  define a sequence  of number t r i p l e s  (& ivy 

mv - i v )  o r  ( i i i y ,  i i iv,  0) .  F i r s t ,   t h e   s u b s c r i p t s  v with  the  smallest  iv w i l l  be 

defined. Among these  subscr ipts ,   one i s  s e l e c t e d   f o r  which - iv i s  as l a r g e  

/- 
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as possible .  After this, t h e  elementary components o r   t h e  number t r i p l e s  (GV, 

iv, GV - iv ) are s o  rear ranged   tha t   the   above   charac te r ized  number t r i p l e  w i l l  

be in t h e  first pos i t i on ,  after which we se t  the  corresponding v = 1. According 

t o  theorem 7, a l l  other  elementary components f o r  which eqs.(88) and (89) with 

k = 1 are sa t i s f ied ,   can   be  so transformed by superpos i t ion   wi th   the  first ele- 

mentary component that no  more iv will exist f o r  them.  The already determined 

first elementary component will remain  unchanged.  Since, i n  any  case iv 2 i l  

and   s ince ,   for  iv = il, w e  automatically  have 6iv - iv 5 m1 - i l ,  this means 

tha t   t he   poss ib ly   r ema in ing  number t r i p l e s   f o r  which an iv s t i l l  exists, will 

sat isfy the   condi t ions  iv > i l  and 6 i ~  - iv > - il . O f  these  remaining 

t r i p l e s  w e  aga in   s e l ec t   one   fo r  which we w i l l  pose v = 2 so  t h a t ,  a t  minimal iv, 

t h e  GV - iv becomes maximal. Here again, a superpos i t ion   in   accordance   wi th  

theorem 7 w i l l  make it poss ib le   to   t ransform  the   e lementary  components f o r  

which eqs.(88)  and  (89)  with k = 2 are val id ,   together   with  the  above-defined 

A 

second  elementary component, i n  such a manner t h a t  no iv w i l l  exist f o r  them 

whereas t h e  number t r i p l e s   f o r  which an iv might s t i l l  exist w i l l  sa t isfy t h e  

conditions 
A 

i y >  i2> il and 6, - i > m 2  - i2) ml - il e 

We cont inue   in  this manner and f i n a l l y   o b t a i n  a sequence  of  elementary compon- 

ents   with number t r i p l e s  (i&, iv, 6" - iv) f o r  V = 1, 2,  ... , A ,  where t h e  /90 
following i s  v a l i d   f o r  V = 2, .. . , A ( na tu ra l ly ,  A = 0 o r  A = 1 i s  a l s o  pos- 

s i b l e )  : 

from which a l s o  6iv > 6ivv-1 fo l lows   d i rec t ly .  Then, €or  CYV = 0 the  elementary 

components w i t h   t h e   c h a r a c t e r i z i n g   t r i p l e s  ( i ? ~ ~ ,  I%V, 0 )  f o r  v = X + 1, ..., p^ 

might  possibly  be l e f t  over,  which  can  be so a r ranged   tha t  GV 2 ( f o r  v = 

= A + 2,  .. . , 6 )  i s  valid.  The elementary  components  with cyv f 0 can  remain 
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unchanged. Th i s   f i na l ly   e s t ab l i shes   t he   spec ia l  normal form. 

Section 5. C.oqQet-i?n .o_f the>._Special Normal Form o f  t h e  Fundamental 
System o f  the _Reduced Homogeneous Dif fe ren t ia l   Eauat ion  

Diff  erenti-a1  Eauation 
- i n t o  -a-F’undamenJal .System of   the   Or ig ina l  Homogeneous 

The purpose of this pa r t i cu la r   Sec t ion  i s  t o  obtain  proof of the  following: 

Theorem 8 :  Based on t h e   s p e c i a l  form (59) resp. (60) of  the  fundamental 

l system  of   solut ions  of   the   different ia l   equat ion ( 51), a fundamental  system 

y w  = @t) S(t) (92) 

of   so lu t ions   o f   the   d i f fe ren t ia l   equa t ion  (6 )  can  be  obtained,  in which case 

but where the   cons tan t  matrix R does  not  necessarily  have  the  Jordan  normal  form 

[ see   a l so  eqs.(108) and (114)l . 
The proof must proceed  in   several   s teps .   Pr imari ly ,  we e s t ab l i sh :  

Theorem 9: If, i n   t h e   c a s e  CYV = 0 ,  eq.(71) i s  v a l i d   f o r  611 values of = 

= ( V I ,  . . . , [v] as well  as i n   t h e   c a s e  Q’v f O”, the   solut ion  submatr ix  V f i  [ see  

eq. (61)l of  eq. (51) can  be thus  completed by a matrix nn i n t o  a so lu t ion  sub- 

matrix 8 of eq.( 6) such  that ,   once more, 

v >< 

V 

i s  valid. 

Proof .   F i r s t ,   l e t   us   cons ider  t h e  case j = 1. So t h a t   t h e   d i r e c t  argument 

* And thus   a l so  oj, f - 2lmi 
P [see  (Bibl. l) ,   eq.(20)  with q = PI. 
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the   ex is tence   o f   the   fo l lowing   d i f fe ren t ia l   equa t ions   for  ' p ( v )  ( t ) ,  rp( v ) + l ( t ) ,  

. . . , 'pc v~ ( t  ) w i l l  be   necessary  and  suff ic ient :  

from  which,  because  of t h e  two poss ib i l i t i es   o f   theorem 9, funct ions ( p c  (t) ,  

. . . , ~ 4 ~ ~ 1  ( t )   p e r i o d i c   w i t h  P can  be  successively  determined  for cyv ; these  w i l l  

be   def ined  uniquely  in   the  case @\I f 0 whereas, i n   t h e   c a s e  aV = 0 i f  eq.('j'l) 

appl ies ,   they w i l l  be  defined  uniquely  only i f  it i s  add i t iona l ly   s t i pu la t ed  

t h a t  a l l  mean values are zero.   In   the  case  of  j = 2, t h e  same method  of  reason- 

i n g  i s  t o  be  applied f irst  t o  
d 9 t  - T & 

' T -  *y; e ,% - 
ins tead  of t o  eq.(95), a f t e r  which t h e  1CPv i s  determined  from  eq.(95)  according 

t o   t h e  same syllogism, by subs t i t u t ing  eq.( 96)  with eq.( 98). The procedure i s  

wholly  s imilar   for   the  remaining  values   of  j. From t h i s ,  eq.( 94) of  theorem 9 

"T 

w i l l  follow i f  k -  - #I' 2, t 3 (99) 

i s  also  taken  into  consideration  [se.e  the  equation  corresponding  to  the  second 

r e l a t i o n  ( LL )I 
This   leaves  the  case cyy = 0, at  v a l i d i t y   o f  eq.( 7 2 ) ,  t o  be  considered. Un- 

der   introduct ion o f  the  vectors   nv  with  the components 
f 



we resolve 

As i n  the  proof   for   theorem 9 ,  we can first determine a uniquely  defined row 

vec tor  lcpv w i th   t he  mean value 0 so t h a t   t h e  jth d e r i v a t i v e   ( n o t e s  v = f i v )  
- 
N T  

= 8, t T 8vt 
e . By j in tegra t ions   o f  nV e w e  ob- 

tain t h e  row vec tor  

From this, we have: 

Theorem 10: I n  the   ca se  cyv = 0 and  eq.(72), eq. (94.) will be  replaced by 

w i t h  
4 

Ins tead  of  eq.(103), we can also w r i t e  

F ina l ly ,  j i n t eg ra t ions  of t h e  tr ivial  solution  system 

from  which the  solut ion  submatr ix  



is obtained. By adding  the  matr ices  v ( p  of VT-% of  theorems 9 and 10, we form 

t h e  matrix $*(t) and write 
( t )  = 

Similar ly ,  we form (see theorem lo)% t h e   q u a n t i t y  Q-'(t) by addi t ion of t h e  ma- 

t r i c e s  sj*(t) according  to  eq.(lO4)  and  then,  taking eq.(10'7) into  considera-  

t ion ,   pu t  

V 

(109 1 

This w i l l  y i e l d  a fundamental  solution matrix ?( t ) o f  eqo(6 )   i n   t he   fo rm of /95 
eq.(92),  where  already t h e  second  equation of the  system (93) possesses   val idi ty .  

To fu rn i sh  a complete  proof f o r  theorem 8, i t  merely remains t o   b e  demon- 

s t ra ted   tha t   eqo(109)  can a l s o  be w r i t t e n   i n   t h e  form of t h e  f irst  equation of 

the  system (93). This i s  au tomat ica l ly   the  case i f  no W\I = 0 w i t h   t h e   v a l i d i t y  

of  eq. (72) are present ,  i o e c ,  i f  the  theorem 10 need  not  be  used. Then, t h e  

matrix Q(t)  of eq.(109) w i l l  already have the  convent ional  form: 

w i t h  

& =  

%- I n   t h e  case of theorem 9, we must  use @'(t) = 0. V 



and 

of the   o rder  Q-, = j. Here, R has the  Jordan normal form. 

Generally,  the  following  theorem  applies: 

Theorem 11: The matrix @( t )  according  to  eq.(109)  has  the form of 

%(t> - e kt 

w i t h  

where, i n   a d d i t i o n   t o   t h e  components G ,  & I ,  .. . , h e ,  only the  matricesY" 

0 -  0 

Y" For   the  meaning of A, see   the   def in i t ion   g iven   in   Sec t ion  4. I n   t h e   c a s e  h = 
= 0, eq. (116) i s  t ransformed  into eq. (110) o r  eq. (114) i n t o   e q . ( l l l ) .  
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with a 1 i n  t h e  jth row occupy the   pos i t i on  1 + iv . I n   t h e   c a s e  A > 0, eq. (11.4) 
will not  have  the  Jordan normal form. 

By d i f f e r e n t i a t i o n  of Q( t  ) t o  t, we obtain Las 
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i .e. ,   according  to  eqs.(l04),  (lo?), and (115): 

%$ I 3  = v++, bQIv t *-$I '0 2 ,  

Hence, eq.(117) w i l l  y ie ld  

I 
I 

* !  
! 

I I " ". 

From t h i s ,  on t h e   b a s i s  of eqs. (116) and (Ilk), the  following  equation can be 

read o f f :  

Further,   in  accordance  with  eqs.(l l6) and ( lob ) ,  we obviously  have 
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5'0' = € . 

However, eq.(113)  follows  from  eqs.(l20)  and (121) [see, f o r  example  (Bibl.3), 

s e c t  .3.43 . 
As a coro l la ry ,  we should  note:   For  the matrix Q, def ined   in   another  /lo0 

report   [(Bibl. l) ,   eq.(lO)]  and which i s  cons tan t   in   accordance   wi th   the  same 

paper  (theorem l), the   fol lowing i s  val id:  

+ - % p O )  la(.) = 3 ( P >  - I+ . (122 1 

For this, besides  eqs.(  92)  and (la), on ly  t h e  second  equation i n   t h e   s y s t e m  

(93 ) as well  as eq. (113)   a re  needed. 

Section 6. Construction  of__th.e  Jordan Normal Form f o r  R /lo1 

Now, w e  will have t o   b r i n g   t h e  matrix R ,  defined  in   eq.(114) ,   to   the  Jordan 

normal  form R" by a similarity transformation: 

O -&-I A' - (123 

The pertinent  fundamental   solution matrix of eq.( 6), accord ing   to  eq.(L!+) and 

according  to   our  f i rs t  paper  [(Bibl.l),   eq.(14)] w i l l  then  read 

y"(t, = ~ ( t )  *A'= $ O ( t )  e bot (124 1 

This  consideration i s  necessary  only  for  > 0 i n   eq . ( l l f+ ) ;  a t  )c = 0, we can 

put  6 = 6. The col l ineatory  t ransformation  (123)  is performed i n  j ind iv idua l  

s t e p s ,   i n  which case ,   fo r  1.1 = 1, 2, .. . , j the   s imi l a r i t y   t r ans fo rma t ion  

'4". p-'& . .I/. - (125) 

w i l l  produce a chain  of  matrices %? whose first l i n k  (I.1 = 0) is  formed by t h e  

matrix O R  = R and .whose last l i n k  i s  formed by t h e  matrix 'A' = Ro . In t h i s  

case,  each matrix R will have the   fo l lowing  form: ' P  
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where t h e  matrix '8" 

= 

matri 

For the  quant i t ies   which  occur   in   eq.(127)   and are no t  yet defined,  the  follow- 

i n g  must be set  

Obviously, mv - mv . The matr ices  Rv , a l s o  o c c u r r i n g   i n  eq.(126)  and  having 

'my columns and j - CL rows, contain a 1 for P < iv i n   t h e  last row and i n   t h e  

(1 + iv - c1 )th column and   a l so   conta in  a 1 i n   t h e  last  row and first column f o r  

iv 5 p < iv+ , but   o therwise   on ly   zeros .   In   the   case  CL * iv+l, t h e   q u a n t i t y  R V  

i s  the   ze ro  matrix. Here, t h e  umdefined i l+1  c o n s t i t u t e s  no r e s t r i c t i o n .  

0 CL 

c1 

Obviously, JR = 8' has   t he  Jordan normal form whi le ,   for  c1 = 0 ,  the   quant i -  

t y  O R  = R according t o  eq.(l l4)  has  the  form  of  eq.(126).  It should  be  noted 

here   that ,   because of 'm = 0, no matrix %to resp. 90 occurs.   In what follows, 

w e  w i l l  make an  induction  from P - 1 t o  P. For this, we de f ine  a subsc r ip t  

4 ( ~ )  for   each p = 1, 2, ..., j i n   t h e   f o l l o w i n g  manner: If CL falls i n t o  one of  

t h e   i n t e r v a l s   w i t h   t h e  end p o i n t s  i l  , %? , . . ., il ( the  lef t -hand  end  point  i s  

0 

* See t h e   d e f i n i t i o n s  a t  the  beginning  of   Sect ion 4. 
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i nc luded   i n   t he   i n t e rva l   wh i l e   t he   r i gh t -hand   po in t  i s  excluded), we w i l l  denote 

The following  relations,   derived  from eq. (1271, should  be  noted: /103 

where eq.(2l)  had been taken   in to   cons idera t ion ,  as wel l  as 

I r o  
and 

It is  use fu l  t o  r epea t   t he  matrix (126) i n  a more de t a i l ed  form ( f o r  v > 

U 

I 

90 



The matrices 6, i n  eq.(125), to  be  constructed  next,   have a d i f f e r i n g  fl& 

structure  depending  on  whether  the  indices P - 1 and P belong  to   the  same o r   t o  

I n  t h i s  case, w e  put  

where, a t  first, we assume thal U 

.. . 

The orders  of t h e  unit matrices *'Go , '-' Bo , . . , '-16x correspond t o   t h e  /lo5 

orders   of   the   matr ices  *180, '-% , .. . , cL-181 i n   t h e  matrix '"a [see 

eqs.(126) o r  (133)l. The matrix CL Qu, as already shown i n   t h e  matrix (137) is 

a n u l l  matrix i f  t h e  matrix IJ"'Ru is  a l s o  a n u l l  matrix. The remaining  matrices 

'Qu f o r  v 2 h are ca lcu la ted  on the   bas i s   o f   the   t ransformat ion  

I 
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matrix. 

R e l a t i v e   t o  CL-lRw with v > &(p - l), t h e  1 i n   t h e  last  row i n  '6~ is  

sh i f ted   one   p lace   toward   the  l e f t .  In   t he   ca se   o f  p-lPEp, t h e   o n e s   i n  *'ft V 

with v > &(CL - 1) are supplemented by a 1 which i s  s h i f t e d  by  one u n i t  toward 

t h e  l e f t  top.  Since 'Qw i s  formed  from Q w  by r ep lac ing   t he '   ones   i n   t he  Q v  

by -1, a l l  ones  in&,-' cl-lfiGp i n   t h e  ( j  - P)th row of p-lfiip vanish  except  for 

t h e  1 i n   t h e  first c o l m  of '-'RJ(cL - 1) i n   t h e   c a s e   o f  c1 > 1. 

-1 c1 CL 

This means t h a t   t h e  matrix E,,, fiGCL* = %* has   t he   p rope r ty   t ha t   t he  

ones  standing i n   t h e   m a t r i c e s  P-*Bv for c1 > J(CL - 1) are s h i f t e d  by one  place 

toward t h e  l e f t  t o p   i n  a d i a g o n a l   p a r a l l e l   t o   t h e  main diagonal, while all o t h e r  

elementaxy.  components  of t h e  matrix CL-lR are re t a ined .   Spec i f i ca l ly ,   t he   one   i n  

*-1 p-1 

Next, we perform  another  similari ty  transformation  with  the  t tpermutation 

matrix" %,,, which i s  produced  from t h e  n-row unit matrix, by supplementing ,&06 

( the   next   fo l lowing  column exac t ly   has   the  1 in   ques t ion )   w i th   t he   cyc l i c   t r ans -  

formation matrix 

I n   t h e   c a s e  CL c i l  [i.e., d(p) = 01, we must p u t  %,,, = because  of t h e   f a c t   t h a t  

no excess 1 need be eliminated  here. It should be no ted   t ha t  
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I n  'R' %CL, t h e  1 which, until now, had  been i n  t h e  ( j  - CL + l)th row a t  t h e  

( ~ 1  + l)th place,   has  been s h i f t e d   t o   t h e   p l a c e   d i r e c t l y   d i a g o n a l l y   a b o v e   t h e  

s t i l l  t o  be  eliminated 1 which remains a t  i t s  p lace ;  all m a t r i c e s   i n   t h e  P-19~,  

loca ted   w i th in   t he   r ange   o f   t he  matrix (139), are shifted by one unit toward 

t h e  l e f t .  I n   t h e   c a s e   o f  q-l CL9? %', t h e  same "'9~ are s h i f t e d  by one 

uni t   toward   the   top  while t h e  1 i n   t h e  ( j - CL )th row remains unchanged: t h e  1 

standing  diagonally  toward  the  lower l e f t ,  which i s  t o  be eliminated, has  been 

s h i f t e d   i n   t h e  same column i n t o   t h e  last row of   differ ing  f rom  the  corre-  

sponding row o f   t he  unit matrix, and  thus  changes cL"lSG~w-~ ~ by one f irst  row 

and column t o  a 8~~ with   an   o rder   g rea te r  by one  [note: G(P) = d(rr, - 13. 
Consequently, a l l  i n  a l l  t h e  new s imi l a r i t y   t r ans fo rma t ion   w i th  8 s h i f t s   t h e  

one, still. standing a t  an  unwanted  place, by  one place  toward  the l e f t  top,   in- 

c reases   the   o rder  of p-19e( CL--I) t oward   t he   l e f t   t op  by one, shifts the   mat r ices  

9- 1 

decreases   the   o rder  of 9 by one.  This means t h a t  c"So receives the   o rder  

j - c1 while 9e(CL, r ece ives   t he   o rde r  mecCL, 

are r e t a ined  [see eq. (127)l .  The ones i n   t h e  ( j - P )th row are now standing /lo7 

as s t i p u l a t e d  by  eq.(133).  Consequently, i n   t h i s   f i r s t   c a s e  we have  transformed 

t h e  matrix p-1i3 with 6, = 6c1%c1 i n  a similar manner i n t o   t h e  matrix b. 

CL 
P) 

CL 

'9, , , . .., cclS&e( CL-l )--I by one  place  toward  the l e f t  top ,   and   f ina l ly  
p-1 0 

P CL z P-1 me( 14-1 ) +1 . The o ther   o rders  
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I 

, /  

Obviously, more accura te ly   than   eq . ( l&l) ,  we then have 

L ( p )  = l ( p - 7 )  + I and 4' -/w = 0 , 
+> ( 143 1 

As i n   t h e  first case,  we first u s e   t h e  similarity transformation  with  the ma- 

t r ix  %* * % p. As a result, we o b t a i n   t h e  matrix 

- Q" . J* . '""A A' * -1 

* - I *  r P J& (144) 

i n  which the   ones   a r e   s t and ing   i n   t he  ( j  - L L ) ~ ~  row but  [see  also  the  second 

equation  of  the  system  (143)l   are now, f o r  V = &(P) - 1 as well as f o r  v = t ( P ) ,  

s h i f t e d   t o   t h e  first column of %%.. Consequently, t h e  matrix -% R differs from 

t h e  matrix R only by t h e  one a t  t h e   p l a c e  &(P ) - 1 i n  the  ( j - P )th row which 

i s  no t   p re sen t   i n  'R. 

c1 

CL 

For  eliminating this one, the  fol lowing  t ransformation i s  introduced: 
- 1  /u 

~ ' C / n >  . * G6 * k P ,  
= 44 

(145 1 
. .  

w i t h  the  "superposi t ion matrix" which i s  obtained  from  the n-rowed u n i t  /108 

matrix i f  a m4cP) -1 -rowed negat ive   un i t  matrix i s  introduced  there ,  as shown c1 

i n   t h e  matrix (146): 

1 
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I n  this case ,   the  unit matr ices   have  the same orders  as the  corresponding .ma- 

t r i c e s  'ao, '80 , .. . , '9~ i n   t h e  matrix (133). The quant i ty  !Bitw, i s  obtained 

by s u b s t i t u t i n g   i n  %&( IJ.) t h e   i n s e r t e d  matrix IJ.) -1 by +@Q cL) -1 . Already 'A 

has the   p re sc r ibed  new orders   of   the   +matr ices  in 'R. Spec i f i ca l ly ,   t he   o rde r  

of c"%&( cL) has  increased  by  one while IJ.-'8O has received an order  lower by  one. 

The appl ica t ion   of  ?I3 t o  ,"A e l imina tes   the   super f luous  1, but   b r ings   the  /los 
matrix - t o   t h e  same p l a c e  a t  which 4tccL) -1 i s  located i n  t h e  matrix 

(146) ; appl icat ion  of  8 it t o  the   l e f t -hand   s ide  w i l l  again  eliminate this 

a u x i l i a r y  matrix so t h a t  w e  f i n a l l y   o b t a i n  'E'". Consequently, i n  t h i s  second 

.e( P) 
b 

. .  

case we must put  

As t he   ove ra l l   r e su l t   o f   ou r   cons ide ra t ions ,  we then  obtain:  

Theorem 12: The matrix R , by means of   the   s imi la r i ty   t ransformat ion  (123) 

w i t h  

i s  t ransformed  into i t s  Jordan  normal  form 

Here, t h e  matr ices  gF are def ined by eqs.(136)  resp.  (147),  with  the auxiliary 

matrices  (137),  (146), and the   descr ibed  q. The elementary compo,?ents & f o r  

0 s v S h have the  fol lowing  orders  mv [see eq.(127)1: 

m v  = m v  + Min (j,iv+l) - Min (J,iy), A 

( l50)  

where,  accordingly, we must pu t  V = [see eq.(128)1 

f o r  v = 0: 

x- means of such a superposi t ion matrix 23, the  proof  of  theorem 7 can be con- 
ducted  expl ic i t ly   apd  s imply,   in  a concise manner. . .  .. " . 

. >  
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I n   t h e   c a s e   o f  q, = 0, the  elementary component R o o   w i l l  vanish. A t  v > X ,  /110 

i.e., i f  e i t h e r  f 0 o r  i f  no i v  a t  a l l  exists a t  UV = 0, the  fol lowing i s  

t r ivial ly  va l id :  A 

m, = m, , specifically, mo = j . 
Another  remark  should  be made here as t o   t h e   c o r r e l a t i o n   o f   t h e  rows s 

ponents i n   t h e   o r i g i n a l   J o r d a n  n o d  form  of R so  t h a t  s a l so  w i l l  be t h e  num- 

ber of elementary components of  eq.(149),  which means t h a t  

i s  valid.  It i s  obvious  (see  theorem 5 )  t h a t  nb i s  zero i f  and  only i f  t h e  

mean value (67) d i f f e r s  from z e r o   f o r  a t  least one $ ( v ) ( t )  ( v  = 1, ..., 6) s ince  

then we have,  correspondingly, i v  = 0. I n   t h e   s p e c i a l  normal  form ( s e e   t h e  

de f in i t i on  in Sect ion 4), we w i l l  have i l  = 0 accord ing   t o  eq.(74)  and  thus, 

according  to  eqs.(l50)  and (152), q, = 0. '' I n   t h e   o t h e r   c a s e s   ( i l  > 0, o r  ab- 

sence  of i v  ), we have % > 0 [see  eq.(153)J0 

It is  use fu l   t o   g ive  an explicit   computation of  the  t ransformation  ofR 

into  the  Jordan  normal form, using a simple example i n  which a l l  p o s s i b i l i t i e s  

occur. Let 
j=4, m,=3, n 

A G2=5, m3=a, n=20, il=2, i2=3, i 3 -  -5. 

The genera l   idea  i s  demonstrated in   t he   fo l lowing   ma t r i ces :  
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'A- 
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'IT 4 '  

1 
1 

' 

1 

I 1  I 



1 
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This completes t h e  transformation of  A i n t o  the Jordan normal form. 
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Section 7. Solutions  of th-e- Adjoint Homogeneous D i f f e r e n t i a l  
ETuation o f - t h e  nth  Order 

" 

The so lu t ion  matrix $ ( t )   o f  eq.(6)  conjugate t o  R" i n  eq.(149),  can be 

calculated  in  accordance  with eqs. (124)  and (148). Since, however, t h e  condi- 

t i o n s  for the  resonance  subcase and f o r  the  exceptional  subcase [see eq.(28)1 

conta in   the   so lu t ions  9 ( t  ) o f   t h e   a d j o i n t  homogeneous system (11) p e r i o d i c  

with P [ r e spec t ive ly   o f   t he   ad jo in t  homogeneous equation (9)1, we w i l l  d iscuss  

this f irst .  Analogous t o  eq.(l24)  and  because  of  eq.(13), w e  have 

We then  again decompose the  t ransformation Q i n t o   t h e  j subtransformations Q w'  

a f t e r  which, we w i l l  i nves t iga t e   t he   i nd iv idua l   ma t r i ces   ' ? ( t )   fo r  CL = 0, 1, 

.*., j ,  whose first and las t  ma t r i ces   a r e  

We then   pa r t i t i on   t he  matrix '!?(t), i n  accordance   wi th   the   s t ruc ture  of  '$3 i n  

eq.( 126), i n t o  i3 + 2 submatrices 

where 8 , i n   add i t ion   t o   ze ro   co lwms ,   con ta ins   on ly   t he  first j - CL columns 

of '3 ,  while ? o  conta ins   the   next  'm, columns, '31 the   next   fol lowing m1 

columns,  and so on. 

P O  

P P 

It i s  usefu l   to   in t roduce   the   fo l lowing   no ta t ion :  



Then, the  following  theorem  applies:  /116 

Theorem 12 The solut ions  v] . ( t )  ( V  = 1, 2, . . . , s) of  eq.(52)  periodic 

with P a re ,  i n  t h e  same sequence,   ident ical   wi th   the  solut ions z t C  ( t )  of 

eq.(9) ,   again  for  v = 1, 2, ..., 8. Consequently, 

zrtd(t> - ztw,(t> f o r  Y - 1.2 ,..., s .  
A 

A (162) 

Proof :   In   t he  matrix " 3 ( t )   a c c o r d i n g   t o  eq.(157), t he   so lu t ion   vec to r s  

per iodic   with P and r e s u l t i n g  from the   per iodic  2cvl ( t )   f o r  v = 1, . . ., 6,  a r e  

exac t ly   the  a c v ~  ( t )  which means tha t   they   a re   s tanding   exac t ly  i n  t h e  last 

column o f   t he  03 v ( t  ) f o r  V = 1, 2, . . , S. A successive  appl icat ion,  on t h e  A 

right-hand  side,   of  the  transformations  described i n  the  preceding  Section 

(5' )' , (Bil )' = Bp and (23-l ) ( i f   t hey   occu r  a t  a l l )   t o   t h e  matrix 
w i l l  t ransform  the  last column of  each '"3 ~ ( t )  unchanged i n t o   t h e  l as t  column 

T P-'@ 

.e( P) 

of ( t ) ( v  = 1, 2,  .. , 2). Consequently, a l s o   t h e  last component of   these 

columns w i l l  remain unaltered. By this induct ive  syl logism,   the  proof   for  

ea. (162) i s  obtained. 

In   t he   ca se  Q, > 0, i.e., i l  > 0 or   nonexis ten t ,  a fu r the r   so lu t ion  of 

eq.(9)  periodic  with P w i l l  occur  in  accordance  with  eq.(154)  and  theorem 5. 

For   th i s ,   the   fo l lowing  i s  va l id :  

Theorem I/+: I n   t h e   c a s e  m, > 0, t he  auxiliary so lu t ion   vec tor   per iodic  

with P i s  present  i n  t h e  las t  column of '$ ( t  ); i t s  las t  component  which, con- 

sequently, must be  denoted by z[[OJ] ( t ) ,  has  the  following form: 

If no iy is  present ,   i . e . ,   fo r  V > A ,  t h e  l a s t  sum n a t u r a l l y  i s  omitted. /117 
Proof :   F i r s t ,  i t  should  be remembered t h a t   t h e   q u a n t i t i e s  J ? ~ ,  occurring 

i n  eq.(163) ,   or iginate  from t h e  last  ( jth) rows of   the  matr ices   in   eq.( lO5),  
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whereas t h e   q u a n t i t i e s  %( t ) o r i g i n a t e   i n   t h e  last [ (n - j )  ] row of t h e  

trix [see  eq.(60)1 

n t h  

a = (&f)T (164 1 

where t h e  row index n - j has  been  omitted  here.  Since a l l  these  funct ions are 

per iodic   with P,  t h i s   s t a t emen t  i s  v a l i d   a l s o  f o r  the  expression  (163).  

A column of 530 ( t )  = 3o ( t )  occurs f o r  t h e  first time as the   on ly  column 

of 130 ( t ) .   S i n c e  this column, a t  increas ing  iL, always 'remains t h e  last  column 

of '30 ( t )  with 1.1 2 1, it follows - as in  the  proof  of  theorem 13 - t h a t  this 

column cannot  change anymore. Consequently, we have  only a s i n g l e  column 

vector  ' a o ( t )  of  '80(t) which i s  l o c a t e d   i n   t h e  jth column o f  ' 3 ( t ) ;  i t s  last 

component i s  the  sought Z E  to13 ( t ) .  

I n   t h e   c a s e  il > 0, formation of ' CJ( t ) = 8 ( t  ) 4 1 - l  )' w i l l  d i r e c t l y  

e ld  

It should  be  recal led  that   the  last  row index n o r  n - j had  been  omitted i n  t h e  

elements of 13, o r  9. I n   t h e   c a s e   t h a t  no i l  exists (P > h ) ,  the  second sum i s  

eliminated. 

According t o  eq.(l3)  and  in  analogy w i t h  eq.(64), w e  have 

with 

as i s  r e a d i l y   v e r i f i e d  from t h e   r e l a t i o n  



Taking   the   def in i t ion  of !J ( t )   i n  eq. (64) in to   cons idera t ion   and  also c o n s i d e r  

i n g   t h a t  ,, zJ (t ) i s  t h e  element i n   t he   r i gh t -hand  lower corner of 3”’ (t  ), t h e  

f o l l o w h g  i s  obtained  from eq.(167): 

rc 

where [see eq.(64)1 
A 5 f t J  ,& Cz>dZ . 

is valid. According t o  eq.(165) this yields   the  intermediate   formula 

Denoting, by c( , , )+~  y-l , a i&-component vector  which, i n  addi t ion   to   zeros ,  

contains only an i i n   t h e  ( ( V I  + iv - l)th component, t h e  vth subsum or eq.(lyO) 

can,  be  written as fol lows for v 5 A : 

Taking  into  considerat ion  the  formula  for   the  reduced  different ia l   equat ion,  

which i s  analogous t o  eq.(43) and, i n  i t s  subdivision,  analogous  to  eq.(65) as 

wel l  as considering  eqs. (103) and (lob), we w i l l  ob ta in  

‘ 8  
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where t h e  1 as t h e  ( ( v )  + iv - l)th component o f   t h e  last  vec to r   o r ig ina t e s  

f r o m  q V )  + iv-l. This last vector ,  however, i s  exac t ly  e C ( v ) + i v - l  so 

t h a t  we o b t a i n   f u r t h e r  

E/ .  t 

I n   t h e   c a s e  v = X + 1, . . . , S, t ak ing  eq.(9l+) in to   cons ide ra t ion ,   t he  last 

vector   in   eq.(171)  i s  omitted. This w i l l  y i e l d  

From eqs.  (172)  and  (173), w e  d i r ec t ly   ob ta in  eq.( 163). 

In   passing,  we note   the  fol lowing:  

Theorem 15:  The funct ion z c c o 3  3 ( t ) ,   i n v e s t i g a t e d  i n  theorem 14, satisfies 

t h e  inhomogeneous reduced   ad jo in t   d i f fe ren t ia l   equa t ion  

that a so lu t ion   vec tor  G - 

w i t h  

(175 1 
/120 

e x i s t s  whose last  [ (n  - j)th] component i s  z C t O l 3  i t ) .  

The v a r i a t i o n a l  method fo r   t he   cons t an t s   [ s ee   (B ib l . l ) ,   f oo tno te  91 fur-  

n i shes   t he   fo l lowing   r e l a t ion  as the   gene ra l   so lu t ion  of eq.(175): 

.r.rith an a rb i t r a ry   cons t an t   vec to r  c and, as t h e  l as t  component, 



According to   the   genera l   theorems [see, f o r  example (B ibLl ) ,  eqs.(l6)  and (17) 

and  the  context  there],  eq.(175)  has a so lu t ion   vec tor   per iodic   wi th  P i f  t h e  

fo l lowing   appl ies   for  a l l  so lu t ions   o f  eq.( 55), per iodic   wi th  P: 

- 7 ic,, t r ) A r  0 for  v = 4 J z a . . - r  . n 

D 

T h i s  i s  exac t ly   the   condi t ion   for  m, > 0 [see f o r  example t h e  remarks after 

eq.(154)]. Consequently, eq.(178) can then  be  determined as a funct ion  per iodic  

with P. The lower limit i n   t h e   i n t e g r a l s  can  be so def ined   tha t  % = 1 a p p l i e s  

f o r  p = ( v  ) + iy - 1 ( v  = 1, . . . , x ) while it has a value of zero  everywhere 

else. Now, eq.(178)  obviously  coincides  with eq. (170)  which means t h a t  theorem 

1 5  i s  proved. 

By j d i f f e r e n t i a t i o n s  of eq.(174), we again verify t h a t  ~ c c ~ ~ ~  ( t ) ,   ob ta ined  

from  eq.(16$) o r  eq.(170), i s  t h e   s o l u t i o n   o f  eq.(9). 

Section 8.  The Minimal  Order of Mappitudes ~~~ -. of  the  Solution_s  and /121 
t h e i r   D e r i v a t i v e s   f o r   t h e  R-esonance Case - 

With respec t   to   the   resonance   case   for   the   d i f fe ren t ia l   equa t ion  (l), t h e  

following  statements  can  be made:  The a d j o i n t  homogeneous d i f f e r e n t i a l  equa- 

t i o n  ( 9 ) ,  as def ined   in   the   p receding   Sec t ion ,   has   the   so lu t ions  zcCol l  , z C t  133 , 
..., z c c ~ r l   p e r i o d i c   w i t h  P ,  where ~ ~ ~ 1 1 3 ,  ..., z t c ~ l ]   a c c o r d i n g   t o  theorem 13 

i s  i d e n t i c a l   w i t h   t h e   s o l u t i o n s  13 , . .., per iodic   wi th  P o f   t h e   a d j o i n t  

homogeneous reduced d i f fe ren t ia l   equa t ion   (52)   and  zrc03 J occurs only i n   t h e  

case of m, > 0. Consequently, i f  the  resonance  subcase exists f o r   t h e  inhomo- 

geneous  reduced d i f f e ren t i a l   equa t ion   (50 ) ,   fo r  an index v > 0, i.e., i f  t h e  

following i s  v a l i d  [see eq.(28)1: 
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I 

then  the  resonance  subcase  a lso w i l l  exist f o r   t h e  inhomogeneous d i f f e r e n t i a l  

equation (1) f o r   t h e  same index v; consequently, w e  then  have 

r 
J trc,,a (2 > ~ ( Z J  t = U L ~ , , ~  = Q ~ , , ~  # o - ( 180 1 
0 

Speaking  generally, we w i l l  denote any index V,  i.e., a l s o  v = 0, as a resonance 

index  provided  that   the  resonance  subcase exists f o r  t h i s  V. Thus, we have t h e  

following: If v i s  a resonance  index  of  the  reduced  differential   equation ( 5 O ) ,  

then v will also   be   the   resonance   index   for   the   d i f fe ren t ia l   equa t ion  (1). 

I- 

We must now d i f f e r e n t i a t e  between the  following  cases:  
.~ ~ 

~~ 

I. No resonance  index exists. 

11. v = 0 i s  no resonance  index,  but a t  l e a s t  one  resonance  index 

v > 0 ex i s t s .  

111. v = 0 i s  t h e  o n l y  resonance  index. 

TV. v = 0 i s  a resonance  index,  and a t  least one  index v > 0 e x i s t s  

which a l s o  i s  a resonance  index. 

The poin ts  I and I1 a lso   conta in   cases   in  which the   so lu t ion  z c c O l 3  i s  not 

present ,   i . e . ,   in  which i 1  = 0 appl ies .  

~~ I n   t h e  Case I ,  e i t h e r   t h e   p r i n c i p a l   c a s e   o r   t h e   e x c e p t i o n a l   c a s e  i s  /122 

involved   for   the   reduced   d i f fe ren t ia l   equa t ion  (50) .  F o r   t h e   d i f f e r e n t i a l  equa- 

t i o n  (l), a t  il = 0, t h e  same case as f o r   t h e  reduced d i f f e ren t i a l   equa t ion  ( 5 0 )  

i s  involved. A t  il > 0 ,  the   except ional   case i s  p resen t   fo r   eq . ( l )   s ince  a t  

l e a s t  one  solution Z C ~ O - J ~ ,  periodic   with P ,  o f   the   ad jo in t  homogeneous d i f fe r -  

en t ia l   equa t ion  ( 9 )  exists. 

In-- t h e  Case 11, t h e  minimal order   o f   the  power  increment fi of $(t) ,   accord- 

i n g   t o  theorem 2, i s  detennined by 



while the  analogous  order  of increment m of  t h e   s o l u t i o n   x ( t  ) of  eq.(l) i s  de- 

t ermined  by 

with mv a c c o r d i n g   t o  eqs.(150)ff, wi th   the   resonance   ind ices   be ing   the  same i n  

both  cases. 

I n   t h e  Case 111, the  resonance  case i s  not   p resent   for   the   reduced  differ- 

en t ia l   equa t ion  ( 5 0 )  but i s  p resen t   fo r   t he   d i f f e ren t i a l   equa t ion  (1). The 

resonance   order   for   x ( t )  i s  defined as [see eqs.(l50) a d  ( l52) ]  

where, i f  no il occurs,  eq.(151)  must  be  taken  into  consid-eration. 

In   t .he  Ca-s~e I V ,  the  resonance  case exists f o r   t h e   r e d u c e d   d i f f e r e n t i a l  

equation  (50) as well as f o r   t h e   d i f f e r e n t i a l   e q u a t i o n  (1). The resonance  order 

f o r  x ( t )  i s  defined  by 
m - Max (m,) * ( 184 1 

Y I L .  
( v =  .%%... > ?) 

In   determining  the maximum, t h e   q u a n t i t y  nb can be  disregarded i f ,  f o r  a t  /123 

l eas t  one  resonance  index from t h e   i n t e r v a l  1 5 V 5 $ one iv exists; i n   t h a t  

case,   the  corresponding my > rrb accord ing   t o  eq.(150) because  of 6iv 2 iiil > 

> rm( j ,  il ); s e e   a l s o   t h e   d e f i n i t i o n  a t  the  beginning  of  Section 4. 

Simi lar   s ta tements   apply   a l so   to   the   der iva t ives  x' (t) ,  x" ( t ) ,  .e ., 
x ('-I) ( t )  if, i n   t h e   c a s e s  I t o  IVY the   index  j i n   t h e  kth de r iva t ive  x( k, ( t )  

i n  eq.(l5O) f o r   t h e  rr,y i s  replaced by (j - k).  The given  increment  orders, i n  

the   case  of resonance, are always t h e  minimal  orders. It i s  e n t i r e l y   p o s s i b l e  

t h a t ,   f o r  example, x ( t )  represents  a so lu t ion   wi th  minirrial order   (with  the  in-  

dex j ) ,  while the  corresponding  der ivat ive x' ( t )  has a higher   order   than  the 
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minimal   o rder   va l id   for  j - 1. Conversely, it cou ld   be   t ha t   x ' ( t )  i s  a s o h -  

t ion   wi th   the   min imal   o rder   va l id  for j - 1, while t h e  once  integrated  funct ion 

x ( t )  = ,r x' (t )dt   has an order  which i s  h igher   than   the   min imal   o rder   va l id  

for j, This i s  due t o   t h e   f a c t   t h a t ,  for d i f f e r e n t   i n d i c e s  j - k ,  no d i f f e r i n g  

determination  of  the  parameter  constants i s  necessary i f  a so lu t ion   wi th  minimal 

orde r  i s  t o  be obtained i n  each  par t icular   case.  

For  explaining our d iscuss ions ,   the   fo l lowing  example i s  used: 

il = 2, iz = 3, i,, 5; and is do n o t  exist. 

Consequently, i t  fo l lows   tha t  
A 
5 = 5, S =  6, n-j = 30. 

CI 

m ,  - m,, + Min(j , iv+l)  - Min( j , i , ) ( for  9- l , . - . , d - l )  

m A  = m A  + j - Min ( j , i A )  (185) 

m y  = my (for , = A +  I , . . . , % ) .  
h 

Accordingly,  the  following results are obtained f o r  t h e  new j-dependent  orders: 

j f o r  j 4 2  
2 f o r  j & 2  m = Idin ( 2 , j )  

ml = 3 + Min ( 3 , j )  - Min ( 2 , j )  
3 for  j $ 2  

4 for  j & 3  

m2 = 5 + Min ( 5 , j )  - Min (3 . j )  = 
5 for 3 4 3 

7 f o r  3 & 5 
m3 = 8 + j - Min ( 5 , j )  

m 4 = 4 + j - j = 4  

m5 = 10 + j - j = 10. 



T h i s  r e s u l t s   i n   t h e  Table: 

j = o  

1 2  0 

2 I 

mO 

ml 

m5 

m4 

m3 

5 5  5 m2 

3 3  3 

8 

4 4  4 

8 8  

I O  10 10 

- 

3 

2 

4 

5 
8 

4 

10 

- 

- 

- 

4 

2 

4 

6 

8 

4 

10 

- 

- 

- 

5 

2 

4 

7 
8 

4 

10 

- 

- 

6 8 7 j&C 

2 2 2  

4 4 4 4  

2 

7 7 7  

I O  10 10 IO 

4 4 4 4  

j+j 11 10 9 

7 

O f  these  numbers,  according  to eq. (184) , t h e  maximum must  be  formed a t  f ixed j , 
f o r  t he   i nd ices  f o r  which.the  resonance  subcase exists. /125 

For example, i f   t h e  resonance  subcase  exists f o r  v = 3, then m w i l l  be a t  

least equal   to  Q. In  any  case,  however, m, is t h e  maximum fop j 2 6 s o   t h a t  

m = q, = j + 3 app l i e s  f o r  j 2 60 This means t h a t  the  minimal  order m f i n a l l y  

inc reases   l i nea r ly  w i t h  increas ing  j. 

Conversely, i f  the  except ional   subcase  exis ts  for V = 3, the   quan t i ty  m 

w i l l  never  be  larger  than nls = 10. If the  except ional   subcase  a lso exists f o r  

v = 5, t he   quan t i ty  m will never  exceed rrta = 7 ;  and so on. It i s  easy   to  demon- 

s t r a t e   t h a t  m r e t a i n s  a constant  value if the  except ional   case exists f o r  v = 3, 

a t  leas t   beginning  w i t h  a cer ta in   index  j. 

In  general ,  it i s  easy  to  confirm  the  following  theorem on t h e   b a s i s  of 

eq.(l85):  

Theorem 16: If the  resonance  subcase i s  p resen t   fo r   t he   i ndex  v w i t h  t h e  

g r e a t e s t   e x i s t i n g  ivy i .e . ,   f o r  V = A ,  t h e  minimal  order my beginning  with a 

cer ta in   index  j ,  w i l l  i nc rease   l i nea r ly   w i th  j ( see  also t h e  d e f i n i t i o n   i n  

Sect. ,!+).   Naturally,   this  index A is  already  defined  before  the  special   normal 

form i s  established.  Conversely, i f  the  except ional   case i s  p r e s e n t   f o r   t h e  
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index v = A ,  the  minimal  order m will remain  constant i n  any  case,  beginning 

with a cer ta in   index  j. I n  a l l  other   respec ts ,  t h e  behavior of t h e  m i n i m a l  

order  my as a function  of j , fol lows  f rom  the foxmula (184): m = m( j )  i s  p a r t i -  

a l l y   p i ecewise   cons t an t   and   pa r t i a l ly   i nc reases   l i nea r ly   w i th   t he   s lope  one. 

For  each  index v for   whichan  iv exists, t h e   p a t t e r n  of  a broken curve w i l l  

1 be  obtained  according  to eq. (185) f o r   t h e  m i n i m a l  order  mv as a funct ion of  j , 
which  has a ho r i zon ta l   s lope   fo r  0 j I; iv and f o r  iv+1 5 j ,  whereas it has   the  

s lope  1 f o r  iv j s i v + l  . 

i Far o $ j 4 i, we have m y  = m y  , 
f o r  i,+l 4 j ure have m, = m, + (i,+l-iv) 

f o r  i,$ j $ i,.+l we have m, = G1 + (j - i,) , 

A 

c 

where, i f  iv+ 1 no l o n g e r   e x i s t s  (V = 1 ), t h e   l a s t  law i s  v a l i d  f o r  all j 2 iv : 

1126 

Fig.1 

Since  the  fol lowing  re la t ion  a lways i s  i n   q u e s t i o n   f o r  two indices  v2 > v1 w i t h  

ex i s t ing  iv, and iv 1 [see  eq.(74)] 
A A 

mv2 - m , ~ ,  > ig2 - 19, 

t he   cu rve   fo r  t h e  index VZ w i l l  begin w i t h  a constant which is  grea te r   than   the  

end  constant   for   the  index V I ,  i.e. , the   curves   for   the   var ious   ind ices  v1 and 

v2 w i t h  e x i s t i n g  iv do n o t   i n t e r s e c t .  For each  index v f o r  which  no iv exists, 

mv = 61" w i l l  be   constant   for  0 j. 



I 111 

Thus, t h e  following  statement i s  obta ined   for   the   min imal   o rder   accord ing  

t o  eq. (184): Let  be  the  highest   index v wi th   ex i s t ing  iy  f o r  which the  reso-  

nance  case i s  present.  I n  addi t ion,  l e t  1 be the  highest   resonance  index a t  

nonexis t ing iv. - Then, the  fol lowing  obviously  appl ies   (see  def ini t ion 3 i n  

sect.&): 

where t h e   p a t t e r n   o f  r q  as a function  of j ,  y i e l d s  a broken  curve  (see F’ig.l), 

while my - is  a 

We would 

only v = 0 i s  

constant 

l i k e   t o  mention*-a  few i n t e r e s t i n g   r e l a t i o n s :   I n   t h e   c a s e   t h a t  /127 

the  resonance  index  of  eq.(l), io e., i n   t h e   c a s e  111 , a t  least  

one  solution  ?(t  ) periodic   with P of eq.( 50) exists as we already know, whose 

mean value can be e i t h e r   e q u a l   t o   z e r o   o r   d i f f e r e n t  from  zero. Then, t he   fo l -  

lowing  theorem a p p l i e s  : 

Theorem 1-7: If i l  = 0, i.e., i f  no so lu t ion  Z C C O ~ ~  per iodic   with P of   the  

ad jo in t  homogeneous d i f f e ren t i a l   equa t ion  (9)  exists, then - i f  a t  a l l  - solu- 

t i ons  %( t )  of eq.( 50) periodic  w i t h  P will exist whose mean v a l u e   d i f f e r s  from 

zero, as well  as so lu t ions  whose mean value i s  equal  to  zero.  

If il > 0 o r   i f  no il exists and i f  a so lu t ion  ?( t ) periodic  with P whose 

mean va lue   d i f f e r s  from  zero i s  present ,   then a l s o  every  other   solut ion a ( t )  
per iodic  w i t h  P w i l l  have the  same mean va lue   d i f f e r ing  from  zero  and v = 0 w i l l  

be  the  resonance  index.  Conversely, i f  a so lu t ion  ?(t) of  zero mean value  and 

per iodic  w i t h  P ex i s t s ,   t hen   a l so  a l l  o ther ,   so lu t ions   ? ( t )   per iodic   wi th  P w i l l  

have t h e  mean value  zero and V = 0 w i l l  be the  exceptional  index. 

Proof: We can   wr i te   the   genera l   so lu t ion   ? ( t )  o f  eq.( 50),  periodic   with P, 

i n   t he   fo l lowing  form: 
II A* 

T 
x( t>  = x (t) +> C j  Y(,)(t) * 

A 

1 
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i l  

where 2 % ( t )  i s  a spec ia l   pa r t i cu la r   so lu t ion   o f  eq.( S O ) ,  periodic  with P, while 

t h e  sum next   to  it represents   the  general   solut ion,   per iodic   with P, f o r   t h e  

homogeneous reduced   d i f fe ren t ia l   equa t ion  ( 51). 

I n  . .  the   case il = 0, t h e  quant i ty  9, ~ w i l l  be a so lu t ion ,   per iodic   wi th  P,  

o f   t he  homogeneous d i f f e ren t i a l   equa t ion  ( 5 0 )  with   the  mean value 1. The o t h e r  

so lu t ions  9c ,,) (V  = 2, ..., 6) of t h e  homogeneous d i f f e ren t i a l   equa t ion  (50)  

have t h e  mean value 0. This shows d i r e c t l y   t h a t ,  by a s u i t a b l e   s e l e c t i o n  of 

the   cons t an t s   c l ,   t he   so lu t ion   %( t )  can be made t o  have a mean value  of  zero. 

Conversely, i t  i s  also p o s s i b l e   t o  make c e r t a i n   t h a t  g ( t )  has a mean value /128 

d i f f e r ing  from  zero. 

For il ~~ > ~ 0 or for   nonexis ten t  il, all solu t ions  $( , periodic   with P, of 

t h e  reduced homogeneous d i f f e ren t i a l   equa t ion  (51 )  w i l l  have t h e  mean value 

zero. From this it fo l lows   tha t  a l l  so lu t ions  $(t>, periodic  w i t h  P ,  must have 

t h e  same mean value as 2*( t ) ( the   case  6 = 0 i s  included  here). 

Then it merely  remains to   be   demonst ra ted   tha t  

from ? ( t ) d t  it follows { f i} v = 0 {exceptional] (188) 
resonance 

resp.  index 

We w i l l  demonstrate t h i s   i n d i r e c t l y :  If, f o r   t h e   d i f f e r e n t i a l   e q u a t i o n  (l), 

the   except ional   case were present ,  i.e., i f  v = 0 would be the  except ional   index 

[ t h e  pr incipal   subcase  cannot   be  present   for  v = 0 s i n c e   t h e  homogeneous d i f f e r -  

en t ia l   equa t ion  (6) has a t  l e a s t   t h e   s o l u t i o n   y ( t  ) 1, periodic   with P I ,  a 

so lu t ion  x( t )  of   eq.( l )   per iodic   with P would e x i s t  whose jth der iva t ive  

p )  ( t )  = x ( t )  i s  a not   ident ica l ly   vanish ing   so lu t ion ,   per iodic  w i t h  P, of t h e  

reduced   d i f fe ren t ia l   equa t ion  (50) w i th   t he  mean value  zero. However, this 

would mean t h a t  all s o l u t i o n s  a(t), per iodic   wi th  P, necessar i ly  must  have t h e  

mean value  zero. If, consequently,  [%(t)dt f 0, it follows necessar i ly  that 
P 

b 
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P 
v = 0 is  the  resonance  index. If, conversely,   ?( t )dt  = 0, a s o l u t i o n   x ( t )  of 

.the differential equation (1) can  be  obtained (see the   aux i l i a ry   t heo rem  in  

Sect.3)  by j in t eg ra t ions  of: t he   func t ion  ?(t), which i s  per iodic   wi th  P and  has 

0 

a mean value  zero.  This means that   the   resonance  case  cannot  exist f o r   t h e  

d i f f e ren t i a l   equa t ion  (1) SO t h a t  = 0 must  be the  except ional   index  s ince  the 

main subcase  had  already been excluded  above f o r  V = 0. T h i s  proves  theorem 17. 

From t h i s  theorem, the  fol lowing  s ta tements   are   obtained:  Whenever t h e  /12 
P 

quant i ty  z t t O l 3  ( t )   f ( t ) d t   d i f f e r s  from 0, i.e., whenever v = 0 i s  the  reso-  

nance  index, r 2( t ) d t  w i l l  d i f f e r  from z e r o   f o r  a poss ib ly   ex i s t ing   pe r iod ic  

s o l u t i o n   2 ( t )   o f  eq.(50). Whenever r Z C C O I J  ( t )  f ( t ) d t  i s  equal  to  zero,  i.e., 

whenever v = 0 i s  the  except ional   index,   the   quant i ty   ?( t )dt  will be  equal t o  

zero f o r  a poss ib ly   ex i s t ing   pe r iod ic   so lu t ion  %( t )  o f  eq.(  50). Consequently, 

a r e l a t i o n  must exist between t h e  mean value  of  such an % ( t )  and t h e  mean value 

0 P 

"0 P 

0 P 

0 

of  the  function Z C ~ O ~ ~  ( t ) f ( t ) .  Thus, the  following  theorem  applies:  

Theorem 18: If , i n   t h e   c a s e  il > 0 or   nonexis ten t  il , the  reduced  differ- 

en t ia l   equa t ion  (50) possesses a so lu t ion   a ( t )   pe r iod ic   w i th  P, the  fol lowing 

equa l i ty  w i l l  apply: P 

(t)f(t)dt = f ( t )d t .  
0 

Proof: This can  be  proved by means of   Lagrangets   ident i ty   [see,  f o r  ex- 

ample (Bibl.h),  Sect.5.33 

r 

(a = 1 ) i n   t h e   f o l l o w i n g  manner : 
-4 



t ion  per iodic   with P whose der ivat ive,   obviously,   has   the mean value  zero. From 

this, the  argument i s  d i rec t ly   ob ta ined .  

Section 9. The Orde-r_ofMapitudes of the   Der iva t ives  of t h e  /130 
s l u t i o n s  ~- in"the  Resonance  Case 

In  s ta tements  on t h e  order  of magnitude of t he   de r iva t ives  of t h e  solu- 

t i o n s   x ( t )  of eq . ( l ) ,   fo r   the   resonance   case ,  it i s  of importance  whether  the 

so lu t ions  ~ ( ( ~ ) ) ( t )  = ' P ( ( v ) ) ( ~ )   [ s e e  eq.(14)1 o f  eq.(6),   periodic  with P, are 

cons tan t   for  V = 0, 1, .. ., 6 or whether  they  actually depend  on t. Here, 

eq.( 2 1 )  and  thus a l s o  eq. (161)  are  analogously  defined: 

A A  a 
( ( v ) )  = mo+rn,+m2+. ..+m,,,+ 1 = m +m +...+n~,,,_~ + 1 2  

+Min (j,iv) + 1 = (9) + Min (j,iv). 

For t h i s  reason, l e t  us start w i t h  an  auxi l iary  considerat ion which descr ibes  

t h e   t r a n s i t i o n  o f  t h e  matrix @ ( t )  from eq.(108) t o  t h e  matrix 'P"(t)  from 

eq.(124.). Primarily,   according  to  eqs.(124),  (141, ( 9 2 ) ,  (113), and ( W ) ,  we 

have 

i .e. ,  

wi th  Q from  eq.(lL8). In  the  e lements   of   the  column b locks   "@(t )   wi th  w = 1, 



..., 1 of   P ( t )   f rom  eq . ( lW) ,   t he   pa r t i t i on  i s  made analogously t o  eq.(lOl). 

Then, we can write 
f I t )  = Tft> t 2 s 

where t h e  matrix @(t) contains  only zeros i n   t h e  columns 1, ..., j ,  m d   c o n t a i n s  

k ( t  ) of  zero mean v a l u e   i n   t h e  columns j + 1, . . . . n ;   t h e  matrix 2 contains 

N 

N 

only  ones,  etc., i n   t h e  first j p l aces   o f   t he  main diagonal  and, on p a r t i t i o n i n g  

( i n  a readily understandable symbolism) /13 
1 = I"+* v= 1 'I, (194 1 

i n t o  2 ,  it w i l l  a l so   conta in   ones   in   the   d iagonal  below - 4 9  beginning a t  t h e  

element CJ+ . For this concept, it i s  necessary   to   cons ider   no t   on ly  

e q , ( l O 5 )   b u t   a l s o   t h e   f a c t   t h a t   t h e  rows o f   m ( t )  result from  each o the r  by  suc- 

cess ive   d i f fe ren t ia t ion   [ see   eq . (S) I .  An appl ica t ion   of   the   t ransformat ion  ma- 

trix Q t o   @ ( t  ) f u r n i s h e s ,   i n  a l l  columns, always only  elements  of  zero mean 

V 

V 

N 

value.  For this reason ,   the   e f fec t  of t he   i nd iv idua l   pa r t i a l   t r ans fo rma t ions  

(148)  and (147) on I;! w i l l  be   inves t iga ted  first. 

?or g r e a t e r   c l a r i t y ,  we w i l l  do this on t h e  example (155)  given a t  t h e  end 

of ~ e c t . 6 ,   w i t h   t h e   e x c e p t i o n   t h a t  now j = 7 ( in s t ead   o f  j = 4 )  is  used so  t h a t  

a l l  imaginable  cases [see eq.(l€l5), s p e c i f i c a l l y   t h e   t h i r d   r e l a t i o n ]  will be 

covered  by this example. The matrices Q,, bte, and Ap , constructed earlier, 

need now be  only  supplemented by 7 - 4 = 3 ones,  placed i n   f r o n t   o f   t h e  main 

9 

diagonal. The following 19  matrices  perform  the  stepwise  transformation  of 2 

i n t o  Go = g 7 .  
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I; 

I 
I 

I 

I 
I 

9 

u 

2. 

f I t ,  

4 

I 

I 
I 

I 

* * 
1 

I 
1 



t, -, f : q 

I 
t -4" 

i 
I I 

1 
1 

1 

1 
1 

1 
1 

1 
1 

1 

L 

L 
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3 
. l  

3 
1 

3 4 

! I v 
I x,*=; J u; 1 

I 



It i s  a l so   u se fu l   t o   pe r fo rm a s tepwise  t ransformation  of   the matrix m(t) 
N 

i n t o  8 ( t  ) on hand o f   t he  same examples. This w i l l  be done i n   t h e   f o l l o w i n g  /136 
11 matrices  where  (except  for a few obvious exceptions) on ly  t h e  column ind ices  

CI 

o f   t h e   f u n c t i o n s   ( t  ) = 6, ( t  ) occurr ing   in  eq. (101) are given,  which a t  first 

appear i n  t h e  ( j  + l)th row f o r   % ( t )  = yo (t). 

N 
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Since, in   the   genera l   case ,   the   cons idera t ions  are completely 

this example, we can  formulate  the  following  theorem: 

Theorem 19: If j i s  l o c a t e d   i n   t h e   i n t e r v a l  

the  fol lowing i s  v a l i d  [see eq.(97)]: 

analogous t o  

(where t h e  las t  r o w  i s  of no i n t e r e s t ) ;  i n  addi t ion,  w e  have the   fo l lowing  /144 
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where the   func t ion  ( P ( ( ~ > , + ~ - ~  occurs  only i n   t h e   c a s e   o f  j - iy > 1. Here, 
Y "I 

w e  have 

[This l a t t e r  fol lows from eq.(95) o r  (97) .I 
Let us now consider an a r b i t r a r y  normal  solution x( t ) ' o f  eq. (l), which we 

w i l l  r e t a i n   i n  what  follows,  and l e t  us make statements dn the  increment   of  i t s  

der ivat ives   x '"( t ) (k  = 0, 1, ..., n - 1). For   t h i s   so lu t ion   x ( t ) ,   eqs . (19 ) ,  

(3l), (26),   and  (32)  are  valid.  Here, it must be   cons idered   tha t ,   in   eq . (3 l ) ,  

t h e   i n d i c e s  V are ar ranged   in  a d i f f e r e n t  manner,  namely, f irst  the  resonance 

ind ices ,   then   the   except iona l   ind ices ,   and   f ina l ly   the   p r inc ipa l   case   ind ices .  

I n   o r d e r   t o   r e t a i n  our  above no ta t ions ,  w e  w i l l  r ep l ace  eq. (31)  by 

-9 u9-p cuv = m v ,  if v i s  the  resonance  index. 
'kw-x F O  :u,-pj! with  (199 1 wv < my, if w i s  the  except ional   index 

Instead  of  eq.(29), .we must  then write 

be  denoted by W s o  t h a t ,   a c c o r d i n g   t o  eqs. (33) and  (34)  but  using our new nota- 

t ion ,   the   fo l lowing  i s  va l id :  
w = Max u, 3 Max Ut= Max m, = m 

( v = o * l ,  . . . * f  1 ( V R e s )  (#Res) ( 202 1 
Independent   of   the   invest igat ions,  made a t  the  beginning of this Section, 

on t h e  matrix 8' ( t  ), the  following  statement can be made d i r e c t l y  on t h e   b a s i s  

of theorem 3. & 
Theorem 20: For a d e f i n i t e  normal so lu t ion  x( t )  of  eq. (1), re lat ive t o  
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broken  curve of the  fol lowing  type:  

4 O r d e r *  

Fig. 2 

In   t he   ca se  4, = 0, only  the  horizontal  a t  the  height  u) remains.  [Corresponding 

p a t t e r n s   a r e   o b t a i n e d   f o r  all x ( t )  a t  V = 0, 1, . . . , P from  eq.(201)  and t h e  V A 

per ta in ing   der iva t ives . ]  

On t h e   b a s i s  of t h e   i n t u i t i v e   s t a t e m e n t s  on the  construct ion  of   the matrix 

Q0 ( t ) ,  s t r i c t e r   s t a t e m e n t s  can  be made. Let j be l o c a t e d   i n   t h e   i n t e r v a l  ( 1 9 5 ) .  

According t o  eqs.( 23)  and  (25), we have the   fo l lowing   for  a resonance  index o r  

[see eqs.(3O) and (31)). Consequently, i n  view o f  eq.(196), w e  have: 

Theorem 21: For an index V S: 8 ,  d i f f e r i n g  from y, a l l  vx(cL) ( t )  f o r  CL = 

= 0,  1, .. . , n - 1, have t h e  same power order  wv (see Fig.3). The same state- 
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ment a p p l i e s   a l s o   t o   t h e   i n d e x  V = Y i n  the  case of j = iy, T h i s  theorem /llr6 

has i t s  necessary complement i n  the  following  ‘theorem: 

Theorem 22: I f ,   i n   t h e   c a s e  j f iy [see  eq.(195)], we have y < 5 ,  t he  

power orders   of   the   der ivat ives   ’x( t )   successively  decrease by 1, beginning 

with 9, down t o   t h e   o r d e r  
l y  - (”, W# 1 

a f t e r  which they remain  constant  and  ‘equal  to 9 - (j - iy ) i n   t h e   c a s e  of wY 2 

2 j - i y  while  they w i l l  be  equal t o  0 i n  t h e  case of u+ j - i y  (see  Fig.4). 

t Power  orders 

Fig.4 

Proof:  In  eq.(199),  according  to  eqs.(23),  (24), ( 2 5 ) ,  and (30) we have /147 

Because  of eq. (197), r 8)(t> = Const. for p -  0.1. ..., J - ~ ~ - I .  . .  ( 206 
o? 

In   the   case  of wy > j - i,, the  coeff ic ients   9 , ( t )  of t i n  eq.(199) 
Y Y-u 

a re   cons t an t   fo r  P = 0, 1, .. ., j - (iy + 1) according  to  eq.(197), w i t h  t h e  

13 0 



W 
coef f ic ien t   o f  t Y being  different  from  zero  because  of  eq.(200).  Conversely, 

t h e   c o e f f i c i e n t  of t i s  not  constant. An application  of  theorem 3 t o  
0y-C J-1 y )  

theorem  20 w i l l  demonstrate the  correctness  of  theorem 22 f o r   t h e   c a s e   i n  ques- 

t ion  here .  
Uy- P 

I n   t h e   c a s e  q S j - iy , o n l y  t h e  powers t with w = 0, 1, ..., q s 

j - iy with  constant   coeff ic ients  will occur   i n  eq.(199), where  again  the co- 
w 

e f f i c i en t   o f  t y d i f f e r s  from  aero. From this, t h e  statement of  theorem 22 

follows a l s o  f o r  this case. 

By means of  theorems 21 and 22, the  theorem  20 can be made  somewhat more 

r igorous.   Let   us   invest igate  a ce r t a in  normal  solution x( t ) of eq. (1). Since, 

according t o  eq.(48), we have a,- ( t )  f 0, d l  der iva t ives  x' Ir) d t )  with  k = j ,  

j + 1, . . . , n - 1 have  the same order  of  magnitude  in  accordance  with  theorem 4 

( s e e   a l s o   t h e  remark made there).  Consequently, o n l y  t h e  power o rde r s   fo r  k = 

= 0 ,  1, ..., j remain t o  be  discussed.  Here,  several  cases  must be d i f f e ren t i -  

ated.  

I f  we have t h e  following  in  eq.(202)  [see a l s o  eq.(195)1 
I 

" ,. 

or 

L, = d g  md simultcneously j = ir , (208) 

then   the   h ighes t   coef f ic ien t  YO ( t )  in eq.(32) i s  not  constant  and all deriva- 

t i v e s  X( Ir) ( t ) ( k  = 0, 1, . . ., n - 1) have t h e  same  power order  ui (see  theorem 21). 

Consequently, i n  Fig.2 we have 4 = 0. Figure 5 shows t h e  power orders  of t h e  /148 
der iva t ives   o f   x ( t )  as a d o t t e d   l i n e  and those   o f   ' x ( t )  as a dot-dash  line*. 

-X- A l l  q u a n t i t i e s  'x( t ), n o t   e n t e r e d   i n   t h e   i l l u s t r a t i o n s   g i v e n  below, y i e l d  
hor izonta l s   loca ted  below the  dotted  curve.  

I 



then   th ree   addi t iona l   cases  must  be  differentiated.  

u , = u ,  
w8 (2101 

Also i n   t h i s   c a s e ,   t h e   q u a n t i t y  YO ( t )   i n  eq.(32) i s  not  constant so  t h a t  we 

again  have 4, = 0 i n  Fig.2. Now, Fig.6, i n  which 'x(t) with i t s  de r iva t ives  i s  

Fig. 5 

p l o t t e d  as a dashed l i n e ,   i l l u s t r a t e s   t h e  power orders   of   the   der ivat ives .  

b )  If, i n   a d d i t i o n   t o  eq.(209), t he   fo l lowing   app l i e s   fo r  a l l  i nd ices  v 0 

d i f f e r i n g  from y /149 

I CU i "1 

Fig.6 

then a l l  Yg(t) f o r  6 = 0, 1, ..., cy - 1 i n  eq.(32)  are  constant,  whereas Ya ( t )  

, i s  not  constant.  Consequently, we have i n  Fig.2 4, = c y  = Min ( j - iy , u'y ); see  

a l s o  eq. ( 204 ). 

Y 



have 

c )  If a t  leas t   one   index  q exists so t h a t ,  i n  addi t ion t o  eq.(209), we also 

then wY - Wq i s  t h e  smallest index for which YO (t  ) i n  eq.(32) i s  not  constant,  

Fig. 7 

i' ...................................................... 
\.. 
t. .. I , *;(: 3>w---j  ~ 

x.. "- "" "" ' ._._.-. -. 

11 ' 73 4 " 1  

Fig.8 

This y i e l d s   t h e   p a t t e r n  shown i n  Fig.$". 

We w i l l  now i n v e s t i g a t e  how high  the power o rde r  of a s ingular   solut ior ,  of 

eq.(l)  must be i n   o r d e r   t h a t ,  a t  given k (k . 1, 2, .... n . l), t h e   q u a n t i t y  

x' k, ( t  ) has a minimal power order.  

For thi .s ,  a complement t o  theorem 19 i s  required,  whose correctness  can  be 

read fron: t h e  matrix examples of  theorem 19 i n   t h e  same manner as the   p roof  of 

% With r e s p e c t   t o  b) and c )  sse theorem 21, i n  Sect.10. 
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theorem 19 itself. This can  be  formulated as follows: 

Theorem 23 : I n   t h e  matrix 4' ( t  1, we have  [see eqs. (160) and (191)] 



I P o u e r   o r d e r s  I Po"er O r d e r s  

where y i s  defined by  ea_.(195). Then, t h e   r e l a t i o n s  (185) apply,  provided 

t h a t  h i s  subs t i t u t ed  by y (see  footnote  on  p.109); this had  been  taken  into 

consid-eration  already i n  Fig.9. If we have 
-44 

m = M a x  (m,, m x )  = m y  ( 219 

then ,   acco rd ing   t o   t he   r e l a t ions  (185) modified i n  this manner, t h e  minimal 

orders  of a l l  de r iva t ives  x( 'I ( t )  (k  = 0, 1, . . . , n - 1) o f  a normal  solution 

x ( t  ) o f  eq. (1) are constant  and  equal  to nv - = &x. T h i s  c o n s t i t u t e s  no  problem,. - - 

Then, on ly  t he   ca se  

m - Max (nil*, m, ) - m, 
m 

remains t o  be  considered. If y i s  the  resonance  index, i.e., i f  y = c, t h e  

power order  of t h e   d e r i v a t i v e  x( ') ( t )  o f  a normal solut ion i s  equal t o   t h e  power 

order' my of Yx(k) ( t )  according t o  Fig.9b. Accordingly,   the  only  case of i n t e r e s t  

- 



i s  t h a t   i n  which y represents  the  exceptional  index,  i .e.,  

7 < v -  (221) 

If k 5 j - i; + 1, then ' x ( t)  w i l l  y i e l d  t h e  minimal power order  of a normal 

s o l u t i o n   x ( t  ) i n  accordance  with  Fig.9a.  Information  on  the  case 

k >  ,i - is+ ( 222 1 

i s  obtained by the  fol lowing theorem: 

Theorem 2h: I f  a given  normal  solution x ( t )  of  eq.(1) i s  resolved,  under 

the  assumptions  of  eqs.(195),  (220),  (2211,  (222) and i n  view  of  eq.(201), i n  

the  following form 
x ( t )  - x % ( t>  + x * p  

with 

[see  eq.(150)]  can  be  selected,  then  the  constants Q'u-y occur r ing   i n   t he  x ( t )  V V 

o f  eq. (224)   according  to  eq.(  26)  can be so modif ied  that  Yo ( t  ), Y1 ( t  ), . . . , 
Y&l ( t  ) are   constant   while  Y&( t ) i s  not  constant,   with 

1 = j = i,. 
I ( 226 

On s u b s t i t u t i n g  this modified  function x..( t ) i n  eq.( 223), t he   quan t i ty  +$( t ) 

can be so se lec ted  t h a t  the   der iva t ives  x( k, ( t )  of w = wy from  eq.(  225), f o r  

k = 0, w i l l  decrease  with  increasing k by 1 each 

M = M ~ x P = ,  m I .  6 

1 L  

i s  reached.  In  the  case i.1 = m=, the  decrease  of r5 

V 

t ime   un t i l   t he  power order 

( 227 

t h e  power order  proceeds  to 

t h e  tth derivat ive  with 4 according  to  eq.( 226)  while, i n  the  case M = mv = mv_ 

it proceeds t o   t h e  4, derivative  with 

A 

- - - 
?rt, h 



Figures 10 and 11, i n  which x ( t )  from  eq.(223) i s  shown as a d o t t e d   l i n e ,  

t P o w e r   o r d e r s  

.3.U 
Y 

Ld 
I-1 

1*. P o w e r   o r d e r s  

Fig.11 

" Proof:  F i r s t ,  i t  shou ld   be   r eca l l ed   t ha t   t he  summation indices  5 + 1, 

+ 2, . . . , y which  occur i n  eq.( 22L) i n   a d d i t i o n   t o  must  be  exceptional  in- 



eq.(225), we assume f o r  V = + 1, V + 2, ..., y - 1, - - 

and  take  into  considerat ion  [see eq.(15O)J 

then eq.(  22Ic)  can b e   w r i t t e n   i n   t h e  form of 

[see eq.(199) or   (31)l   wi th   [see  eqs . (26)  o r  (2L)I 

" 
where t h e  v;'~ ( t )   p e r i o d i c   w i t h  P and  having a mean value  zero can  be  selected 

[see  (Bibl.1)  eq.(lO3)1. A comparison of t h e  t-powers i n  eqs.( 22L) and  (23l) ,  

" 

us ing   the   no ta t ions  I * =  Y ,  Ctt , .  . . )  y - 1  
- 

pVJ = 6- (i- i Y + J  for  ( 233 
w i l l  y i e l d  I 2 3.- i y + ,  

d; f t )  = V J  t 2 '0 ( f ) ,  J= 0 , I )  ..., d- i==f,..," , 
I P V 6  v Y ( 234 ) 

V I  Y 

which  can  be  used oc ly  up t o  6 cy  i n  which case  any summands with w V 6  not de- 

f i n e d   i n  :..q.( 233)  must  be  omitted. It must be   no ted   he re   t ha t   t he   quan t i t i e s  

(225) and (229) a re  the  highest   occurring  exponents of t a t  '8, ( t )   o r  ' 8 ,  ( t ) .  , 

138 
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In   add i t ion  t o  eq.( 206), w e  w i l l  a l so  need t h e  following r e l a t i o n  which 

has been obtained by means of eq.(214) f r o m  eq.(232): 

I n   t h e   c a s e  m; = 0, the  second sum of  the  second formula i n   t h e  system (232) 

w i l l  a l so   occur  i n  eq.(235) f o r  6 = 1, which  must  be s p e c i f i c a l l y   t a k e n   i n t o  

cons idera t ion   la te r   for   eqs . (237) ,   (24 l ) ,  ( 2 4 3 ) ,  and  (244). For 6 = 0, 1, ..., 
j - i, - 1, eq.(206) i s  conta ined   in  eq.( 235)  since i n  tha t   case ,   accord ing   to  

eq=(235) ,   the   quant i ty  Py-l, - r becomes negative,  meaning t h a t   t h e  sum does 

not  occur  in  eq.(235). This formula i s  appl icable  no matter whether j = i, 

or j # i, , as can be  confirmed by means of eqs. (214) and (215 ). /156 
In  accordance  with eq.( 232), we o b t a i n   f o r  t h e  remaining summands i n  

Since,  according t o  eq.(233), we have 

2 i- ir+, P > 8 -  i y  

t h e  sum does  not  occur  in  eq.(234) f o r  t h e  case t h a t  

J" o,~~...,J - iy - 1 * 



so t h a t   h e r e  Y 6  ( t  ) according t o  eq. (235)  [resp. eq. (206)l i s  constant’“. Conse- 

quently,  we now need  consider  only 

J j - it, j - i + I,..., 1 II ( 240 1 
N e x t ,  we ca lcu la te ,   in   accordance   wi th  eqs.(231+), (235), and (237), 

Then, we s e l e c t   t h e   a r b i t r a r y  dT such  that   the   parentheses   vanish,  i.e., V 

where  only  eq.(27) for v = must be  taken  into  considerat ion.  Then, t h e   o n l y  

remairAing terms of eq.( 241) a r e  

Here, t h e  sum occurs  only if [see  eq.(231)3 

.?;-,,r = 1- ( t -  44) 2 0 
i .e.,  because  of  eq.(226), if 

s 3 f  

Consequently,  according t o  eq.( 2 l J ) ,  t h e   q u a n t i t i e s  Y O ,  I 1  , . . . , Y4- l  a r e  con- 

s t an t   wh i l e  

i s  not  constant  [see  eq.(198)1. I n  view of  theorem 3 ( o r  theorem 20) this 

% A t  j = i y ,  these  terms do not  occur. 



proves  theorem 24 u n d e r   t h e   a d d i t i o n a l   s t i p u l a t i o k   t h a t  x-,,,(t) i n  eq.( 223) con- 

t a i n s  no  t-powers  higher  than tM , with  M from eq.( 227). For t h i s ,  it must first 

be es tab l i shed   tha t   no  V o f  t h e  series + 1, ..., A can  be a resonance  index 

and  thus  need  not   furnish  any t-power.  For  such a V ,  according t o  eqs.(74) 

and  (150), we would have 

n ,. 

A -,P>~,P )“= t(Zg”;5) 2 % p t ( i s + , - i = ) =  A -= Y 8 

which c o n s t i t u t e s  a con t r ad ic t ion   t o  eq.(220). For the  resonance  indices  of t h e  

series x + 1, ..., 8 ,  according t o   t h e   d e f i n i t i o n   i n   S e c t i o n  4 ,  t he   h ighes t  in- 

dex  has t h e   g r e a t e s t  my = &V which means that ,   according  to   eq.(220) ,  we must 

have mv < rn;. Here, i t  should   be   no ted   tha t   the   case  m = %= = m, i n  eq.(220) 

had  been  taken  care of a l ready when t r e a t i n g  eq.(  219). This will immediately 

produce t h e  bound (227)   s ince   t he   i nd ices  v > 6 furn ish   on ly   per iodic  components 

t o  a normal  solution x( t ) of  eq. (1). 

- 

As an  appl icat ion  to   theorem 24, we can use t h e  example on p.109  with /Irs 

w = w  = 5 + ( 8 ” )  = I O  3 

and,  according  to  eq.(226) 

1 = 8 - 3 - 5 .  

I n  Fig.12, t he   do t t ed  l i n e  i n d i c a t e s   t h e  power o rde r  o f  t h e  kth de r iva t ive  

of t h e   s o l u t i o n  x ( t )  according  to  theorem 24, w h i l e   t h e   s o l i d   l i n e  shows t h e  

minimal power order   according  to   Fig.9a;   the   dot-dash l i n e  gives x( t ). This 

l a t t e r   l i n e   g e n e r a l l y  a l so  i s  ,va l id   for   the   so lu t ion   (223)   wi th  U! from  eq.(  225), 

2 

i.e., f o r  u! = 10, and  can  drop  below t h e  value KQ 7 only a t  a spec ia l   se lec-  

t i o n  of the   cons tan ts  ‘4; for the   se lec t ion   (242) ,  this can drop t o   t h e  minimal 

141  
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order   of  & = 5. 

So as t o   o b t a i n   a n  example a l s o   f o r   t h e   c a s e  (228), our  above  statements 

Fig.12 

t Power o r d e r s  

P "e """"_ "". *.\ """""""~" - """ > a. *fU 

v = 0, 2,  and I+. We now have  again 
w - w7 = 10; 1 = 5, 
- - A - 2 ,  ml= 7 ,  mr= 5,  whereas m = m = m A A 

5 = m 5 = 6 .  
I Y Z J  

Consequently, we have i n  eq.(227), 

M = Max (5;6) = 6 

and,  according  to eq.( 228), 

1" = 5 - ( 6  - 5 )  = 4 
zc 



The  new conditions are i l l u s t r a t e d   i n  Fig.13. 

Section 11. Method ___. fo-r-the F o m t i o n  of Examples 

Theorem 25: The funct ions 
up. t 

+(t) - e . Y,(t) for p -  I,...+, ( 245 

where t h e  cp,(t) are n- t imes  cont inuously  different iable   and  per iodic   with  the 

period  P,  form a fundamental system of  a d i f f e r e n t i a l   e q u a t i o n   o f   t h e  nth order  

having  coeff ic ients   per iodic   with  P,   provided  that   the  Wronski determinant of 

t he   func t ions  y1 , ... , y,, d i f f e r s  from  aero  for  each  value  of t wi th in   t he   i n -  

terval 0 5 t s P. Here, t h e  matrix $ = fl-i(0)(n(P)  contains  only  elementary 

If the   exponect ia l   func t ions  are canceled from t h e  columns, a d i f f e r e n t i a l  equa- 

t ion   wi th   coef f ic ien ts   per iodic   wi th  P i s  obtaified, i n  which c a s e   t h e   f a c t o r  of 

t he   h ighes t   de r iva t ive  which,  except for tne   s ign ,   co inc ides   wi th   the  Wronski 

ous  funct ion  differ ing from zero. 

fur.damenta1  system: 

y1tF 

determinant  of  the  functions  y1, . . , y,, , accord ing   t o   de f in i t i on  i s  a continu- 

In   addi t ion ,   the   fo l lowing  i s  v a l i d   f o r   t h e  

( 247 



From t h i s ,  it follows  that   [see  (Eibl. l) ,   eq.(lO)] 

Consequently,  the matrix ?+l consists  of  elementary components of t he   o rde r  1. 

Theorem 26: The funct ions 

where t h e  (c1 ( t  ), . . , (4 (t ), are  m-times cont inuous ly   d i f fe ren t iab le   func t ions  

wi th   t he   pe r iod  P,  form a fundamental system of a d i f f e ren t i a l   equa t ion  of t h e  

mth order   having  coeff ic ients   per iodic   with P, p rovided   tha t   the  Wronski d e t e r  

minant  of the  funct ions yl ( t) ,  . . ., ym ( t )  differs  from  zero for each  value  of t 

w i t h i n   t h e   i n t e r v a l  0 t P. The corresponding matrix @ consis ts   of   exact ly  

one  elementary component of t he   o rde r  m. 

Proof: The d i f f e ren t i a l   equa t ion   o f   t he  mth order,  which i s  analogous t o  

eq0(2L6), a f t e r  reducing by gat and introducing  the  operator  
d 

D = T  

. . . . . .. . . . . . 



as well as the   no ta t ion  

the   fo l lowing  form: 

The first row i s  o 

0 ( 253 1 

lb ta ined   d i rec t ly ,   whi le   the   o ther  rows are obtained  by com- 

p le te   induct ion   wi th   re fe rence   to   the  row index. If t h e  power f a c t o r s   a r e  

eliminated by forming column combinations, a d i f fe ren t ia l  equation  having co- 

e f f i c i en t s   pe r iod ic   w i th  P w i l l  be  obtained.  Again,  the  factor of the   h ighes t  

de r iva t ive  y") ( t ) ,  except   for   the   s ign ,  i s  equal t o  t h e  Wronski determinant of 

t he   func t ions   y l ( t ) ,  ..., y m ( t > ,  i.e., i s  continuous  and  different from  zero. 

In  addition,  analogous t o  eq.(2!,7), w e  have 



I 

Y+''== 

P 

1 

p' ... 
1 1  

2 , . -  

From this, again i n  accordance  with  Gother   paper  [ (Bibl.l), eq. ( lo)] ,  i t  

fol lows  that  

-] 1"Z)i 

" 

1 

d P  
e 

Consequently,  the matrix !$consists of  a single  elementary component of t h e  /1614 

order  m. Theorem 25 f o r  p = 1 represents  a spec ia l   ca se  O f  theorem 26 f o r  m = 1. 

From t h i s ,  we d i r ec t ly   ob ta in   t he   fo l lowing  theorem: 

Theorem 27: If, i n  forming  the  different ia l   equat ion  (2L6) o r  eq.(253) 



* =  ["...J I 

where Spv i s  of   the  order  my. 

Section  12. Examples /165 

EScample 1: In  accordance  with  theorem 26, with m = 2 and = 0, w e  start 

from t h e  fundamental system 

= s i n  t ,  ytll- t . s i n  t - 3 cos t + I. * 

These  functions  are  solutions  of  the  differential   equation  [see  eq.(253) o r  t h e  

formula  analogous t o  eq.( 246)l 

2 $,, - 2 s i n t   c o s t  + s i n t  ,. - 
3 + s i n  t - cos t 2 9' + (259) 

reads 

with 

The transposed  reciprocal matrix g(  t )  = (5-l (t)  ) w i l l  then  be 
T 

The elements  of  the last  row 

I 



form a fundamental system f o r   t h e  homogeneous d i f f e ren t i a l   equa t ion   ad jo in t  ./16t 

t o  eq. (259) : :~,= h g n + ( 2  s i n t   c o s t  + sint  2): 4 + COS 2 t g=o. 
3 + s i n 2 t  - cos t   3+s in2t -cos t  

N e x t ,  we cons ider   the   so lu t ions  a ( t )  o f   t h e  inhomogeneous d i f f e ren t i a l   equa t ion  

with 

,.ma ; in  - 2 s i n t   c o s t  + s i n t  j;, + 4 + cos t 2 
2 ( 265) 3 + s i n  t - cos t   3+s in2t -cos t  

f ( t )  = 3 + s i n  t - cos t .  2 
( 266) 

Since we have a so lu t ion  2111 , per iodic   wi th  P, we car, form t h e   i n t e g r a l  

axd   f i nd   t ha t ,   f o r   t he  inhomogeneous d i f fe ren t ia l   equa t ion   (265) ,   the   except ion-  

a l  case i s  present.  Then, the   genera l   so lu t ion  %(t) i s  obtained  in   accordance 

w i t h   t h e   v a r i a t i o n a l  method f o r  the   cons tan ts  [see eq.(18)1, as follows: 

t t  I C o  s i n t  + " c o ( ~ - 3   c o s t )  + I C l  s i n t .  

w i t h   t h e   d e r i v a t i v e  
21 ( t )  = - t c o s t  - s i n t t  + t - "c0  cos t + 

If 'q, = 1 i s  s e l e c t e d ,   t h e n   z ( t )  i s  per iodic   wi th  ;Irr a t  a r b i t r a r y   c l .  How- 

ever, i f  q, f 1, t h e  power o rde r  of g ( t )  w i l l  be ii = 1. Since   the   fac tor   o f  t 

i n  %(t) i s  a nonconstant  function,  periodic  with 2rr, a l s o   t h e   d e r i v a t i v e  2' ( t )  

has  the same power order  m' = m = 1 (see  theorem 3, resp.  theorem 20). 

l 

We then   t u rn   t o   t he   d i f f e ren t i a l   equa t ion  /16? 



a t  j 2 1 which i s  transformed,  with x( J, = 2, i n to   t he   r educed   d i f f e ren t i a l  

equation  (265).   First ,  we construct a fundamental  solution matrix D ( t ) ,  accord- 

. i n g   t o   t h e  method descr ibed   in   Sec t ion  5, for t he   d i f f e ren t i a l   equa t ion  homo- 

geneous t o  eq.(269). By se lec t ing   success ive ly  j = 1, 2, 3, we ob ta in   t he  solu- 

t ion  matrices [see eqs.( lW),  (1091, (11413 

Here, according t o  eq.( 260), we have 

J 

1168 

( 273) 

Next, we determine  the matrix 6 for the  transformation [see eq.(123)] 

A 0  = €-'A& 
which  brings  the matrix R t o   t h e   J o r d a n  normal form Ro . This then   y ie lds  [see 

I l r  9 



We use t h i s   f o r   c a l c u l a t i n g   t h e  new fundamental  systems  [see  eqs.  (124) and /169 

- 
0 

1 

0 

0 

0 

( 279 



I n  eq. ( 277), it must a l s o  be no ted   t ha t  

This  result   coincides  with  theorems 19 and 23. Analogously, the  fol lowing i s  

va l id   w i th   r e spec t   t o  eq.( 278): 

j = 2 ,   j > i l , y = l  

Equation (278) i n d i c a t e s   t h a t  

t., =-Yo - 0 At f Lt.> 

which  again  coincides  with  theorems 19 and 23. 

The reciprocal  transposed  matrices,   conjugate  with eqs.(277) - (279), 

w i l l  then  read 



From t h i s ,  one  can  read  from  the last  row 

i.e.,  independent  of j i n  accordance  with  the  proof  of  theorem 14. The corre- 

sponding  periodic  solution zrL11 J , i n  a l l  th ree   cases ,  will be  (see  theorem 13) 

Naturally, the   func t ion  Z L L O J I  can a l so   be   ca lcu la ted   in   accordance   wi th   the  

formula (163): 

In   accordance  with  the last  row of   the matrix 9 [see eq.(262)], we have  the 

functions 

and, i n  accordance  with the jth power row of  t h e  matrix @ [ see  eqs.(270)-(272)], 

the  funct ions 

As r e a d i l y   v e r i f i e d ,   t h i s  w i l l  also y i e l d  eq.( 283). 

In   add i t ion ,  i t  i s  poss ib l e   t o   r ead  from the  representation  of  eqs.(277)  /172 

to   (2j9)   resp.   eqs . (280)  - (282) ,   the   orders  my of  the  elementary components, 

r e s u l t i n g   i n   t h e  scheme 

152 



which co inc ides   accura te ly   wi th   the  scheme of t h e  minimal orders   for   the   reso-  

nance  subcase [see eq.(185)] . 
For our  spec ia l   case   (266) ,   the   quant i ty  v = 1 i n  accordance  with eq.( 267) 

i s  the  exceptional  index.  Conversely,  a computation of t h e   i n t e g r a l  [ see  

eq. (283 11 tr 

shows t h a t  v = 0 i s  a resonance  index. 

Natura l ly ,   ins tead   of  eq.(  287)  one  can a l so   ca l cu la t e   ( s ee   t heo rem 18) t h e  

i n t e g r a l  

by means of t h e   s o l u t i o n  

of eq.(265),  periodic  with 2r(. I n   t h i s  manner, the  following  sequence of  values 

i s  obtained I"or the   overa l l   min imal  power o rde r s  o f  t h e   s o l u t i o n s   x ( t )   f o r  j = 

= 0, 1, 2, 3, etc.: 
n = m  = 0,1,1,1, e t c .  ( 289) 

The general   solut ion  x( t )   of   eq.(269)   can  be  determined  in  two d i f f e r e n t  wags: 

e i t h e r  by a success ive   i n t eg ra t ion ,   s t a r t i ng  from  Et(t), t o  eq.(288) or by /173 
construct ing a p a r t i c u l a r   s o l u t i o n   i n   a c c o r d a n c e   w i t h   t h e  method  of v a r i a t i o n  of 

the   cons tan ts  on eq.(  269) and adding  the  general   solut ion  of   the  conjugate  homo- 

geneous d i f f e ren t i a l   equa t ion  which  must  be  taken  from t h e  matrix @ ( t  ) [ see 

eqs.(277) - (27911. 
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By success ive   in tegra t ion  of eq.(268) (j = 1, 2, 3) ,  we ob ta in   t he   so lu t ions  

The v a r i a t i o n a l  method f o r  the  constants,   using  the  argument 

which  coincides  with  the first equation  of  the  system  (290) when t a k i n g   i n t o  & 
consideration  that   cl ,   and  c1,  o r  a1 are   a rb i t ra ry   cons tan ts .  Analog- 1 0 

ously, we o b t a i n   f o r  



and for 

I C 1  s i n t  + I c2)* 

x(t) - 3 g + t s i n t  + 

t2 I C o  + t ( IC1  
+ 2 "  

I C o  cost  - ( IC1  - Oc1) s i n t  + 1 c2 

( 3  cost - ; cos2t) 

- "c0sint)  + 

s i e t  + 4 s i s t  cost  + 1 

2 
+ t cost)  + ICl(& + cost)  + 

2-3 
1 C 2 t  + c3 , 1 

x ( t )  = 3 $ - t c o s t  + ( i ~  s i n t  - 3 s i a t )  + 1 

21 3, co + g I C 1  + t( co cost + IC2)  + 1 

u ( I C 1  - OCI) cost + I C 3 .  

(295 

Again, we obtain  coincidence  with  the two last  r e l a t ions   o f   t he  system (290). /175 
Solu t ions   wi th   the   ind ica ted  minimal order  (289) are readi ly   constructed 

[see eqs.(293) - (29513: 

For j = 0, we only must p u t   ( a s  already known ) q, = 1 i n  eq. (268). 

For j = 1, the   s e l ec t ion   o f   cons t an t s   i n  eq.(  290) i s  a rb i t r a ry .  

For j = 2, we put  ~0 = - while the   o the r   cons t an t s  are a rb i t r a ry .  

For j = 3, w e  put q, = - 2 and c1 = 0, while the   o the r   cons t an t s  

1 

2 
1 1 

are a r b i t r a r y .  

If we start from a f i x e d   s o l u t i o n   x ( t ) ,  power orders  are ob ta ined   fo r   t he  

sequence of t h e   f u n c t i o n s   x ( t ) ,  x' ( t ) ,   x t ( t ) ,   x " T ( t ) ,   e t c . ,  whose p a t t e r n s  can 

be  determined  in  accordance  with eq.( 290). L e t  us cons ider   the   case  j = 3 and 

155 



s e l e c t  a d e f i n i t e l y   d e t e r m i n e d   x ( t > ,   r e s u l t i n g   i n   t h e  power orders  of  the  deriv- 

a t i v e s  b k ) ( t )  f o r   f o u r   d i f f e r e n t   c a s e s  as shown i n  Figs.14 - 17 [see  eq.(295)]. 

I n  a l l  these  cases,   the  following is val id:  

Case I: + 2 1 f o .  

Here, we have wl = 3, 4, - j - i y  = 2 [see  eqs.( 204) and (296)l. The per- - 

t a in ing   pa t t e rn   co r re sponds   t o  Fig.?. 

4 P o w e r  O r d e r s  

Fig.14 

Case 11: co + 5 = 0, but 'cl f 0, 1 

2 
Here, we have w1 2, dy = 2. 

The following  pattern  corresponds t o  Fig.8: 

4 P o w e r  O r d e r s  

Case 111: + 5 = 0, c1 = 0,  and c2 a rb i t r a ry .  1 

2 
Here, we have W 1  = 1, 4, = 4, = 14in ( j  - il , ( ~ 1 )  = I E ~ .  ( 2 ,  1) = 1 [see 

eqs.(204)  and (29611. 
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I n  accordance  with  Fig.6, we obtain  here  

f P o w e r   o r d e r s  

Fig.16 

Case I V :  ~0 - 1 = 0, a d  the  remaining c a r b i t r a r y .  1 

Here, we have 

m 

The constant i s  s o  s e l e c t e d   t h a t   [ s e e  eq. (29111 t he   coe f f i c i en t   o f  t van- 

i s h e s   i n   t h e  sum xlvf(t)  = O x " ' ( t )  + ' x " f ( t )  (see  theorem 24) .  

4 P o w e r   o r d e r s  

See  a lso Fig.10. 

In   t h i s   ca se ,   t he   cond i t ion  ( 2 4 2 )  must be   s a t i s f i ed .  We w i l l  check this 

condition;  the  only  remaining item is  

I d  = Od . ( 298 

I 



where 

(199) 

s t a n t  

Q i s  t h e  coef f ic ien t   o f   the   h ighes t  power i n  x [see eqs.  (122)  resp. 1 

and  (26)1, i. e., - -+ A ~0 accord ing   to  eq.( 295),  whereas Q i s  t h e  con- 

f ac to r   o f   t he   h ighes t  power i n  x( t  ), i.e., equa l   t o  - accord ing   t o  

5 
2 

0 

2 
eq.(295). I n  accordance  with  eq.(203)  resp.   (26),   the  coefficient of "x(t)  can 

be computed [see  eq.(279)]: 
9 
O,(t> = OB0(t) = Od y(co$t) = Odo ( - c o s t ) ,  

so tha t ,   necessa r i ly ,  = - . Consequently,  the  condition  (298)  reads as 0 

2 
follows : - 5 + 'Q, = 7, which y i e l d s  Q, = 1  1 /178 

2  2 

as had  been  assumed  above, fo r   t he   ca se  I V .  

The f o u r   t r a c e s  from Figs.14 - 17 a r e  compiled i n  Fig.18,  together w i t h  

t h e  minimal so lu t ion  of Fig.18 ( t h e  l a t t e r  i s  shown as a s o l i d   l i n e ) .  

t Power o r d e r s  

Fig.18 

It i s  readi ly   demonst ra ted   tha t   a l l   poss ib le   cases   a re   covered  by t h e  

cases I - I V .  No s o l u t i o n   x ( t )  ex is t s  which,  simultaneously w i t h  a l l   t h r e e  

der iva t ives  x' ( t  ), x,,( t ), and x"* (t >, would  have the  corresponding minimal 

order,   as  represented  in  Fig.18 by t h e   s o l i d   l i n e .  

A s  a second  example, we w i l l c o n s i d e r t h e   d i f f e r e n t i a l   e q u a t i o n  

,(J+7)+ 2 cos t  x(j+2)+ ,(j+l)+ 
5-2 sint 

+ & c ~ s ~ ~  sin x ( j )  = f ( t )  ( j  2 0 )  



with two d i f fe ren t   r igh t -hand  s ides  : 

The gene ra l   so lu t ion   o f   t he  inhomogeneous  reduced d i f f e ren t i a l   equa t ion  ( j  = 0 )  

with 

According t o  theorems 25 - 27, as a l ready   expressed   in   the   no ta t ion ,  

A 

ml 
2 ,  m2 I 1, il = 1, i2 i s  n o n e x i s t e n t ,  

o(, = N 2  - 0 * 

and, f o r  t he   ca se  (b), a 2 /180 G (t) - & cos t  + t ( s i n t  - c o s t  + 3 )  + 

(304 1 
t ( 7  cos t  - 5 s i n t  + 5 s i n t   c o s t  - 3 ) .  I1 8 2 
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... .. - . . . . . . . . 

I 

1 + 3 s i n t  + cos t 2 
2 sint - J 

F o r   t h e   c a s e   ( a ) ,   t h i s  w i l l  y i e l d  

I 9 = 1 e x c e p t i o n a l   i n d e x  . .  
I* 

( t ) f ( t ) d t  = 1 s i n t ,   ( 1 + 3   s i n t  + c o s   t ) d t  = 
2 .  

P 3 
= 3 T #  o ,  2 resonance   index  

and ,   fo r   t he   ca se   (b ) ,  

7 i [*&t)f ( t )dt  = - 3  - J  ( s in t -   1 )d t  = 
0 

I 6 IT) 0, 9= 1 r e s o n a n c e   i n d e x  

dct , ( t ) f ( t )d t  7 ' ( s in t  - 1)(1+7 s i n t  + cos t ) d t  = 
2 

4 0 

1 so, 9 =  2 e x c e p t i o n a l   i n d e x  

t ions   wi th   zero  mean 

i n   o u r   c a s e ,   h a s   t h e  

value from t h e  system of d i f f e ren t i a l   equa t ions  ( 9 7 )  which, 

following  appearance: 

As so lu t ions ,  we obtain 
- 
qf) = 7 s i n t ,  1 Y 

Y = 0, Yr2, = - c o s t .  
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" 

On subs t i t u t ing   t h i s ,   t oge the r   w i th  eq.(305), i n t o  eq.(308), w e  obtain 

In  addi t ion,   according  to   eqs . (162)   and  (305) ,  we have 

In   bo th   cases   (a )   and   (b) ,   the   except iona l   case  exists f o r  u = 0. 

Thus, t h e  scheme of t h e  minimal  orders,  according t o  eq.(185), w i l l  be 

From this, i n  t h e   c a s e   ( a ) ,  we obtain for j = 0, 1, 2, 3, ... the  sequence /182 

of  minimal o rde r s   [ s ee  eq.(184)3: 

m = m2 = l , l , l , l , . . .  . (313 1 

Then, we de termine   the   genera l   so lu t ion   x( t )  f o r  j = 4, yielding: 

I n   t h e   c a s e   ( a ) :  

+# .cos  t + h s i n 2 t )  + 1 c o  t4 + al t 3  + a2 t2 + 

+t("c0  - 3 cos t  + a3)+ (- "cosint + 1 c l *  $ cos t  + 

+2cl s i n t  + a4>. 

In   t he   ca se  ( b ) :  
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x(t> = 3 F J - 3 z + x  t5 t4  t2 cost  + t (- 3 s i n t  - cost)  + 

+($ s i n t  - 3 cost + 3 s i n 2 t )  + 1 c1 t4 + al t 3  + 

+a2 t2 + t ( I C 1  7 I cost  + a + (-ICl s i n t  + 

+ c2* 7 cost  + c o   s i n t  + a4). 
3 

I 1  2 

I n  the   ca se  (a), four  subcases must  be d i f f e r e n t i a t e d :  

f r o m  which the  fol lowing  curves   for   the power orders ,  analogous t o  Fig.18, a r e  

obtained: 

I P o w e r   o r d e r s  /183 

Fig.19 

I n   t h e   c a s e   ( b )  o n l y  one  possible  case exists wi th   a rb i t ra ry   cons tan ts ,  

y i e l d i n g   t h e   p a t t e r n  shown i n  Fig.20: 

I Power  O r d e r s  
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It should  be  mentioned, i n   a d d i t i o n ,   t h a t  it would not  have been necessary 

i n   t h e  above  examples t o  check the   index  v = 0 as t o  resonance  s ince  the m i n i m a l  

order  m, can never  be  greater  than ml o r  Q. 
Example 3: As t h e   t h i r d  example, l e t  us consider   the  different ia l .   equat ion 

,(j+j)- 4 + s i e t  + 2 cos2t  x(j+2) + 

sin2t + 4 

(315) 
+ 6  + 2 cos2t - sin2t , ( j+l)  + sin2t - 6 ,(j) = f ( t ) ( j $ o )  

sin2t + 4 sin2t + 4 

with  the  r ight-hand  sides 4% 

The general   solut ion  of   the inhomogeneous  reduced d i f f e ren t i a l   equa t ion  has t h e  

following form: 
A A* 1 6  

A (316 1 
x ( t )  = x ( t )  + c2 q 1 ) ( t )  + I C ,  + 2 c o   9 ( 2 ) ( t )  

w i t h  

where, i n  t h e   c a s e   ( c ) ,  

r :  
x ( t >  = 4 et - 2 t2 c o s t  - t (2 c o s t  + p s i n t )  + 1 

+(% s i n t  - a c o s t  - 2 sin't - 
-2  cos't - 3 s i n t   c o s  t - 2 s i n  t c o s t )  

11 

2 1 2  

and, i n   t h e  case (d ) ,  
A *  
x ( t )  - 5 et- t c o s t  + (- s i n t  + 2 sin2t - 

" I cos2t  - s i d t  - 3) (319) 

Thus, we have i;ll = 2, & = 1 i n  which case ,   for  V = 2, the  pr incipal   case 
.' A, 1 T 

is  p r e s e n t ;   f o r  v = 1, no il exists. For t h e  matrix $( t ) = (n ( t  ) I  , we obtain 



I 

p ( l ) =  - tyL13+ +(I) = 4+2 s i n t   c o s t  
A . sint + c o s t  + 

+ s i n t  - 2 c o s t  
4+2 s i n t   c o s t  

# 

In   t he   ca se   ( c ) ,  we ca l cu la t e  

z r  
J ; & t )   f ( t ) d t  = - T ( s i n t  + c o s t )  cost; d t  = 

= - T + 0, V =  1 resonance  index 
0 

and, i n   t h e   c a s e   ( d ) ,  

0 Y =  1 e x c e p t i o n a l   i n d e x  

For  the  orders   of   the   e lementary components wi th   var iab le  j ,  we obta in   the  scheme 

m2 

I n   t h e   c a s e   ( e ) ,  we ob ta in  V = 1 as the  resonance  index. For  e s t ab l i sh ing  that; 

V = 0 i s  the  exceptional  index, it is  only  necessary t o  determine zI c 0 3 3  which, 

accord ing   to  eq. (163), y i e l d s  
- 2 + 2 s i n t   c o s t  

"CLOII 4 + 2 s i n t   c o s t  

which means t h a t  v = 0 i s  the  exceptional  index.  According  to eq. (l84), t h e  

following  values are obtained for t h e  minimal orders:  

m = m  = 2,2,2,  e t c .  (323) 

Thus, i n  analogy t o  Fig.18, t h e   p a t t e r n  shown i n  Fig.21 will be  obtained. 



I P o w e r  o r d e r s  

Fig. 21 

For each  curve, a normal  solution x( t  ) can  be  defined. /186 

Case (d ) :  With the   pe r iod  P = a, t h e   q u a n t i t y  V = 0 i s  the  resonance 

index, v = 1 the  exceptional  index,  and v = 2 the   p r inc ipa l   index .   S ince ,  for 

the   reduced  different ia l   equat ion,   the   resonance  case  does  not  exist ,  the  follow- 

i n g  can  be  calculated  according  to  theorem 18: 

m = mo - 0,1,2,3, etc .  

. For t h e  power orders  with two case   d i f f e ren t i a t ions ,   t he   pa t t e rn  of  a l l  poss ib l e  

cases i s  obtained.   ( In   the  dot ted  curve,  u?1 = 1 has  been  assumed while, i n   t h e  

t P o w e r  o r d e r s  



dashed  curve, t h e  minimal so lu t ion  w1 = 0 has been  assumed.) 

Example 4: I n   t h e   d i f f e r e n t i a l   e q u a t i o n  

with j * 0 which, f o r  j = 0, has   the   genera l   so lu t ion  

1 -  A 
ml = 2, m2 = 2 m i t  il = 1 and i2 is n o n e x i s t e n t ,  

Here, ou r  scheme f o r  t h e  minimal orders   reads  

j = o  j > / 1  3 2 1 

m 

2 2 2  2 

2 2 2  2 

1 1 1 IT 0 

m2 
- .~ " 

According to   eqs . ( l6b)  and (l66), we c a l c u l a t e  

Consequently,  the  exceptional  case i s  p resen t   fo r  V = 1, while  the  resonance 

case  occurs   for  v = 2. Thus, t h e   o v e r a l l  minimal orde r   [ s ee  eq.(18/+)] w i l l  

be m = Max(mv ) = 2 f o r  all j. Here, i t  i s  o f  EO importance  whether v = 0 i s  /188 
( V r e 6.1 
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I 

the   resonance   index   or   no t   ( see   case  I V  on p.108). All so lu t ions  x(t) ,  no 

matter how l a r g e  j might  be, show t h e  same behavior  with  respect  to  the  sequence 

of   the power orders  of x, x?, d l ,  etc .  This w i l l  y i e l d   t h e   p a t t e r n  shown i n  

Fig. 23. 

t Power o r d e r s  

Fig. 23 

As a f i n a l  example, l e t  us consider   the  general   d i f ferent ia l   equat ion  with 

cons tan t   coef f ic ien ts  [;-J E $n-j)+ a ' A(n-j-l)+ 
I X  ...+ a,-j x = I r t )  

where f ( t  ) i s  t o  have the   pe r iod  P. It can be readi ly   proved that a l l  solu- 

t ions,   per iodic   with P, o f  the  reduced homogeneous d i f f e ren t i a l   equa t ion   a r e  

functions  with a mean value  of  zero. If, namely, a funct ion $( t ), per iodic  

w i t h  P ,  i s  in t roduced   in to   the  homogeneous reduced  different ia l   equat ion,  a l l  

terms which a re   mul t ip l ied  by the   de r iva t ives  3f ,  yff, . .. , y , have a mean 

value of zero.   Consequently,   also  the las t  term,   an-dF(t) ,  must  have a zero 

mean value. 

~ ( n - j )  

It fo l lows  from the  above  statement t h a t  t he   func t ions  /Isq 

have a mean value  of  zero. We must now prove t h a t  3.11 functions  GP(t)(w ( v )  + 

+ 1, ..., [VI; v = 1, ..., $ )  must  have a mean value of  zero. 

For  example, t he   d i f f e ren t i a l   equa t ion ,  homogeneous LO eq.(329), i s  solved 



by means of t h e  argument y ( t )  = east This i s  assumed t o   y i e l d   t h e   c h a r a c t e r  

i s t i c   e q u a t i o n  
(330) , 

>c JrnL 

wi th   pa i rwi se   d i f f e ren t   va lues  cui, .. ., where, i n   a d d i t i o n   t o  a complex CY" 

a l s o   t h e  conjugate-complex  root Cyll occurs. Then, t he   gene ra l   so lu t ion  of t h e  

d i f f e r e n t i a l   e q u a t i o n  homogeneous t o  eq. (329 ) w i l l  read 

X 

P '  
x - I\ 

where Pv( t )  represents   an   a rb i t ra ry   po lynomia l   o f   the   degree  GV - 1: 

The d i f fe ren t ia l   equa t ion ,  homogeneous t o  eq. (329 >, has  solut ions  with  the 

per iod P exac t ly  when t h e   s o l u t i o n s  CY?, .. ., Cui o f  the   cha rac t e r i s t i c   equa t ion  
15 

(330)  contain  whole  multiples of  - . L e t  us  assume t h a t  this i s  t r u e   f o r  2rri 
P 

" " 
the   va lues  CY;, . . . , mi while the  remaining CYp are no  whole  multiples of  -. 
We repea t   here   tha t  CY;' f 0 s ince ,   o therwise ,   the   d i f fe ren t ia l   equa t ion  homogene- 

ous t o  eq.(329)  would  have t o  have a cons tan t   so lu t ion  which c o n t r a d i c t s   t h e  

s t i pu la t ion   o f  a,-j f 0. For the  e igenvalues  .I;'(. = 1, ..., 8 ,  ..., S), t h e  

following bound [see  (Bibl.1)  eq.(20)1 

" x- 2rri 
P 

1' 

" 

"rr < m : ) $  
1 (333 1 

a t  f irst ,  i s  Rot valid.   Generally,  we p u t  

dy = . I y  + ; p .  

% 
( 9  = 4,.", ;,.-., ;) . 

According t o  eqs.(331),  (332),  and (33/+), t h e  first row of the  fundamental 

/190 

(33h) 

with 
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That G( v )  ( t )  (v  = 1, . . . , 6 ) has a mean value  of  zero was determined  above; 

Patural ly ,   the   remaining GP E 0 a l s o  have a m e a n  value  of  zero. 

The above  statements  yield  the  following  theorem: 

Theorem 28: I n   t h e   c a s e   o f  a different ia l   equat ion  with  constant   coeff i -  

c i e n t s ,  no iv exists. 

Consequently, t h e  matrix st' =st'' automatically i s  i n  the  Jordan  normal form 

[see  eqs . ( l lL) ,  (l23)]; f o r  t he   t r ans i to ry   t r ans fo rma t ion  matrix, 6 = (3 i s  

va l id .  

Consequently,  the scheme for t h e  minimal  orders  ha5 the  fol lowing form: 

1191  

I n  genera l ,  a t  low values o f  j and i f  the  resonance  case i s  present  f o r  t h e  

reduced differential   equation,  the  resonance  subcase  cannot be of  any   s ign i f i -  

carce f o r  the   index  v = 0. However, as soon as j i s  s u f f i c i e n t l y   l a r g e ,  Q w i l l  
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predominate  over a l l  o ther   o rders  ml , ... , w and it becomes of  importance t o  

determine  whether V = 0 i s  a resonance  index  or  not.   For  this we need t h e  solu- 

t i on  z~~~~~ (t), periodic   with P, of t h e   a d j o i n t  homogeneous d i f f e r e n t i a l  equa- 

t i on ,  which already i s  de f ined   fo r  j = 1, 

l 

F i r s t ,  w e  w i l l  demonstrate  that  zt LO]] ( t )  must be  constant. For  this, we start 

from  eq.(329) w i t h  f ( t )  of  zero mean value. By j integrat ions  and making use 

of t h e   a u x i l i a r y  theorem i n  Section 3, we obtain  an  equation 

w i t h  an F ( t  ) of  zero mean value.  Since g ( t )  has t h e  power order of 

t he  same power order  w i l l  be v a l i d  a l s o  f o r  x(t). Since we have nb = j i n  ac- 

cordance  with  eq.(338), it fol lows  that  v = 0 i s  the  except ional   index  for  j > 

> %. Consequently, it then i s  necessary t h a t  

i s  selected.  Therefore, it i s  obvious t h a t  i n  eq.(342), we have uZcloI, ( t )  0. 

The constant k i s  determbed i n  accordance w i t h  eq.(l74) as 



From eq.(179) we t h e n   f i n d   t h a t  v = 0 i s  the   r e sonance   i ndex   fo r   t he  differ- 

t i a l  equat ion   (329) ,   p rovided   tha t   f ( t )   has  a mean v a l u e   d i f f e r i n g  from zero 

and will be   the   except iona l   index  i f  t h e  mean value o f  f(t ) is zero   ( see   a l so  

footnote  on p.35). 
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s t i t u t e  f o r  Higher  Studies  for  Teachers  in  the  Mathematical   Department  for 

Higher  Education of the  Minis t ry   of   Educat ion  and  Schools   in   Cairo.   In  December 

1956, I received  the  "special   diplomart  from  the  College of  Education AT a t  

Schams University,  Cairo. 

Since  beginning  of 1959, I am holding a scholarship by t h e   A l l i e d  Arab 

Republic f o r  f u r t h e r   s c i e n t i f i c   s t u d i e s   i n   t h e   f i e l d  of mathematics i n   t h e  

Federal  Republic  of Germany. 

I n   s p r i n g  1959, I successfully  completed a cour se   i n  German a t  t h e  Goethe- 

I n s t i t u t e   i n  Blaubeuren  near Ulm. After this, I studied  mathezatics,   applied 

mathematics,  and  mechanics  during  the summer semester 1959 a t  t h e  Braunschweig 

Poly technic   Ins t i tu te .  From March 1960 t o   d a t e ,  I worked on my thes is .   This  

t hes i s   has  been  published i n  a j o u r n a l   i n   t h e   t h r e e   f o l l o w i n g   p a r t s :  

1) On the  resonance  concept  in  systems  of n ordinaly l i n e a r  differ- /195 



ent ia l   equa t ions   o f   the  first order ;  

2 )  On t h e  resonance  case  in  systems of n ordinary  nonl inear   differ-  

en t i a l   equa t ions  of t h e  first order;  

3 )  Study  of   the  resonance  case  in  systems of  ordinary liEear differ- 

en t ia l   equa t ions .  

The f o u r t h  and las t  p a r t :  

4 )  The resonance   case   in   o rd inary   l inear   d i f fe ren t ia l   equa t ions   o f   the  

nth  order 

will be  published, i n   p a r t ,  i n  a journal.  
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“ N A T I O N A L  AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting  contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information  generated in connection 
with a NASA contract or grant  and released under  NASA auspices. 

TECHNICAL  TRANSLATIONS:  Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used  by NASA that may  be  of particular interest in commercial and other 
nonaerospace applications. Publications include Tech Briefs; Technology 
Utilization Reports and Notes; and Technology Surveys. 
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